Abstract:
A composition and method for die-level packaging of microelectronics is disclosed. The composition includes about 20% to about 80% of a thermoplastic base matrix; about 20% to about 70% of a non-metallic, thermally conductive material such that the composition has a coefficient of thermal expansion of less than 20 ppm/C and a thermal conductivity of greater than 1.0 W/mK. Using injection molding techniques, the composition can be molten and then injected into a die containing the microelectronics to encapsulate the microelectronics therein.
Abstract:
Node-to-node communication pipelines may include code modules that are configured and assembled across a protocol according to dynamically input module-specific parameters. The parameters may be input to a service into which the modules are registered, and one or more appropriate pipelines may be dynamically assembled.
Abstract:
A method includes, in response to a request by a subscriber for a subscription to a product or service, wherein the subscription has a subscription period and wherein the subscription period is initially for a first period of time, automatically providing the subscriber with the product or service for the first period of time. The method also includes automatically entering the subscriber into one or more sweepstakes drawings which occur during the first period of time. The one or more sweepstakes drawings have one or more corresponding jackpots. The method also includes, at the end of the subscription period, automatically renewing the subscription for a next period of time; and in connection with the renewed subscription, automatically entering the subscriber into one or more sweepstakes drawings which occur during the next period of time. The operations of automatic renewing the subscription for a next period of time, and automatically entering the subscriber into one or more sweepstakes drawings occurring during that period of time are repeated until the subscriber terminates the subscription.
Abstract:
A blow molded, hollow plastic container including two opposed, relatively longer sidewall portions which alternate with two opposed, relatively shorter sidewall portions. A first of the relatively shorter sidewall portions includes a grip area, and the opposed second relatively shorter sidewall portion includes a pour area.
Abstract:
A method for making a stator assembly having a thermally-conductive, plastic housing for a high speed motor is provided. A thermally-conductive, high-density polymer composition is used to make the housing, and the stator is uniformly encapsulated therein. The polymer composition comprises a base polymer matrix such as polyphenylene sulfide, and a thermally-conductive, high-density filler material such as zinc oxide.
Abstract:
A method provides an interconnect structure having enhanced structural support when underlying functional metal layers are insulated with a low modulus dielectric. A first metal layer having a plurality of openings overlies the substrate. A first electrically insulating layer overlies the first metal layer. A second metal layer overlies the first electrically insulating layer, the second metal layer having a plurality of openings. An interconnect pad that defines an interconnect pad area overlies the second metal layer. At least a certain amount of the openings in the two metal layers are aligned to improve structural strength of the interconnect structure. The amount of alignment may differ depending upon the application and materials used. A bond wire connection or conductive bump may be used with the interconnect structure.
Abstract:
A plurality of projection images are acquired over an angular range during the slow rotation of a C-arm gantry having a source and detector. Phase-specific reconstructions are generated from the plurality of projections, wherein each phase-specific reconstruction is generated generally from projections acquired at or near the respective phase. In one embodiment, a plurality of motion estimates are generated based upon the phase-specific reconstructions. One or more motion-corrected reconstructions may be generated using the respective motion estimates and projections. The motion-corrected reconstructions may be associated to form motion-corrected volume renderings.
Abstract:
An ESD protection circuit (40) uses parasitic drain-body diodes (47, 49) of the output buffer transistors (46, 48) as the main, or dominant, ESD protection diodes. Specifically, butted source-body ties in the output buffer transistors (46, 48) provide the ESD diodes (47, 49). Using parasitic drain-body diodes of output buffer transistors with butted source-body ties as the dominant ESD diodes reduces the layout area required to implement the ESD protection circuit as compared to an ESD protection circuit having stand alone diodes. Also, the butted source-body ties reduce susceptibility to latch-up and reduce capacitive loading because there are no added diffusion regions tied to the pad.
Abstract:
A light-emitting diode reflector assembly having a heat pipe and a reflector body is provided. The assembly further includes a mounting member for mounting a circuit board having an array of light-emitting diodes. The mounting member and reflector body are made from a thermally-conductive polymer composition comprising: i) about 20% to about 80% by weight of a base polymer matrix such as polycarbonate; and ii) about 20% to about 80% by weight of a thermally-conductive material such as carbon graphite.
Abstract:
An injection moldable, thermally conductive polymer composition that has ultra low CTE properties is provided. The composition is suitable both for substrate applications in high precision electronics assemblies as well as over molding applications in conjunction with ceramic substrates. The composition includes a base polymer matrix material loaded with thermally conductive filler, which imparts thermal conductivity to the polymer matrix while also maintaining or enhancing the dielectric properties of the base polymer. The resultant composition exhibits CTE properties in the range of between 9 ppm/° C. and 2 ppm/° C., exhibits an optical anisotropy of below 1.5, and a thermal conductivity of greater than 2 W/m° K. The composition is suitable for use in over molding applications in conjunction with virtually any suitable electronics substrate material without the introduction of mechanical stresses produced by large CTE differentials.