摘要:
A process for the manufacture of haloalkanes, or more particularly to a process for the manufacture of 1,1,1,3,3-pentachloropropane (HCC-240fa) and/or 1,1,1,3-tetrachloropropane (HCC-250fb). The process includes (a) mixing a catalyst, co-catalyst and a haloalkane starting material under conditions suitable to produce a homogeneous mixture; (b) reacting the homogeneous mixture with a haloalkene and/or alkene starting material under conditions suitable to produce a haloalkane product stream; and (c) recovering a haloalkane product from said product stream.
摘要:
A method for producing 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene using a single set of four unit operations, the unit operations being (1) hydrogenation of a starting material comprising hexafluoropropene and optionally recycled 1,1,1,2,3-pentafluoropropene; (2) separation of the desired intermediate hydrofluoroalkane, such as 1,1,1,2,3,3-hexafluoropropane and/or 1,1,1,2,3-pentafluoropropane; (3) dehydrofluorination of the intermediate hydrofluoroalkane to produce the desired 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene, followed by another separation to isolate the desired product and, optionally, recycle of the 1,1,1,2,3-pentafluoropropene.
摘要:
Provided are azeotropic or azeotrope-like mixtures of 1,1,1,3,3-pentachloro-propane (240fa) and hydrogen fluoride. Such compositions are useful as an intermediate in the production of HFC-245fa and HCFO-1233zd.
摘要:
The present invention provides a process for the preparation of a fluoroiodoalkane compound represented by the formula CF3(CF2)n—I, wherein n is 0 or 1. The process includes the step of contacting: (i) a compound represented by the formula CF3(CF2)n—Y, wherein Y is selected from H, Cl, Br, and COOH and n is 0 or 1; (ii) a source of iodine; (iii) an alkali or alkaline earth metal salt catalyst supported on a carrier; and (iv) a catalyst promoter for the alkali or alkaline earth metal salt catalyst. The catalyst promoter includes at least one element selected from a transition metal element, a rare earth metal element, a main group element other than the alkali or alkaline earth metal element, any salts thereof, and any combinations thereof. The contacting is carried out at a temperature and pressure and for a length of time sufficient to produce the fluoroiodoalkane compound. The contacting may be carried out in the presence or absence of a solvent and in the presence or absence of oxygen.
摘要:
Disclosed is a process for the manufacture of haloalkane compounds, and more particularly, an improved process for the manufacture of the compound 1,1,1,3,3-penta-chloropropane (HCC-240fa), which mitigates the formation of by-products from vinyl chloride (CH2═CHCl). The present invention is also useful in the manufacture of other haloalkane compounds such as HCC-250 and HCC-360. One embodiment of the invention comprises a method for mitigating 1,1,3,3,5,5-hexachloropentane and 1,1,1,3,5,5-hexachloropentane formation in the HCC-240fa manufacturing process, in which FeCl3, is introduced to a reactor only after the start-up phase has ended and a continuous operation has started. In a preferred embodiment, “pre-chelated” FeCl3, which is concentrated in a catalyst recovery column, is introduced to reactor after the continuous operation has started.
摘要:
Disclosed is a process for the manufacture of haloalkane compounds, and more particularly, to an improved process for the manufacture of the compound 1,1,1,3,3-pentachloropropane (HCC-240fa), which mitigates the formation of by-products. The present invention is also useful in the manufacture of other haloalkane compounds such as HCC-250 and HCC-360. One embodiment of the process comprises a method and system for avoiding the formation of polyvinyl chloride during the production of HCC-240fa from CCl4, in which vinyl chloride (VCM) is fed into a reactor as a vapor instead of as a liquid, using a diffusing device to further increase the contact surface between VCM vapor and CCl4.
摘要:
The instant invention relates, at least in part, to a method increasing the cost efficiency for dehydrohalogenation production of a fluorinated olefin by recovering and recycling spent dehydrohalogenation agent. In one aspect, the present invention relates to dehydrohalogenating a fluorinated alkane (e.g. pentafluoropropane and/or hexafluoropropane) in the presence of a dehydrohalogenating agent to produce a fluorinated olefin (e.g. tetrafluoropropenes and/or pentafluoropropenes). Removal of spent dehydrohalogenating agent from the reactor allows for facile separation of organic and dehydrohalogenating agent, the latter of which is recycled.
摘要:
Disclosed is a method for the production of 1233xf comprising the continuous low temperature liquid phase reaction of 1,1,1,2,3-pentachloropropane and anhydrous HF, without the use of a catalyst, wherein the reaction takes place in one or more reaction vessels, each one in succession converting a portion of the original reactants fed to the lead reaction vessel and wherein the reactions are run in a continuous fashion.
摘要:
Disclosed is an integrated process to co-produce trans-1-chloro-3,3,3-trifluoro-propene (1233zd (E)), trans-1,3,3,3-tetrafluoropropene (1234ze (E)), and 1,1,1,3,3-pentafluoropropane (245fa). Overall the co-production is a three-step process. The chemistry involves the steps of: (1) the reaction of 1,1,1,3-tetrachloropropene and/or 1,1,3,3-tetrachloropropene with anhydrous HF in excess in a liquid-phase catalyzed reactor in such a way as to co-produce primarily 1233zd (E) and 244fa (plus by-product HCl); an optionally (2) the 244fa stream can then be used to directly produce any (or all) of the following desired products; (a) the 244fa stream can be dehydrochlorinated to produce the desired second product 1234ze (E); and/or (b) the 244fa stream can be dehydrofluorinated to produce 1233zd (E) if more of that product is desired; and/or (c) the 244fa stream can be further fluorinated to form 245fa.
摘要:
Trans-1233zd, the trans-isomer of 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) can be used as blowing agents, solvents, cleaning agents, as well as monomers of macromolecule compounds, and can be prepared through the dehydrochlorination of 1,1,1-trifluoro-3,3-dichloropropane (HCFC-243fa) with the help of a catalyst. The present invention is directed to an integrated process is proposed to produce trans-1233zd from 243fa, which is consisted of the following four major unit operations: (1) Catalytic dehydrochlorination of 243fa into trans/cis-1233zd, (2) HCl recovery, (3) Catalytic isomerization of cis-1233zd into trans-1233zzd, and (4) Isolation of trans-1233zd.