摘要:
In this non-contact power feeding apparatus, a power feeding circuit is provided with a power transmission coil and a first parallel capacitor to provide a first parallel resonance circuit, while a power receiving circuit is provided with a power receiving coil and a second parallel capacitor to provide a second parallel resonance circuit. Both parallel resonant circuits are set to have the same resonance frequency and a power frequency of a high-frequency power source in the power feeding side circuit is set to be the same as this resonance frequency. A circuit section including the high-frequency power source and a circuit section including the first parallel capacitor and the power transmission coil are connected by the electric field coupling of electric field coupling capacitors.
摘要:
Multiresolution decomposition of image data before scan conversion processing is hierarchically performed, low-frequency decomposed image data and high-frequency decomposed image data with first to n-th levels are acquired, nonlinear anisotropic diffusion filtering is performed on output data from a next lower layer or the low-frequency decomposed image data in a lowest layer, and filtering for generating edge information on a signal for every layer is performed from the output data from the next lower layer or the low-frequency decomposed image data in the lowest layer. In addition, on the basis of the edge information on each layer, a signal level of the high-frequency decomposed image data is controlled for every layer and multiresolution mixing of the output data of the nonlinear anisotropic diffusion filter and the output data of the high-frequency level control, which are obtained in each layer, are hierarchically performed.
摘要:
Control apparatus (and a control method) for a vehicle, the vehicle including: an internal combustion engine (EG); a brake booster (21) in which an intake negative pressure of the internal combustion engine is used; and a brake master cylinder (22) connected to an onboard hydraulic pressure actuator (33), the control apparatus comprising: pressure detecting means (27) for detecting a fluid pressure of the brake master cylinder; driving state detecting means (133) for detecting the driving state of the internal combustion engine; and control means (11) for retarding an ignition timing with a throttle valve (114) of the internal combustion engine opened in a case where the driving state detected by the driving state detecting means is in the idle driving state during a cold state of the internal combustion engine and for driving the fluid pressure actuator to assist the brake master cylinder in a case where the fluid pressure detected by the pressure detecting means is equal to or lower than a predetermined value during the idling state of the engine and during the cold state of the engine.
摘要:
An ultrasonic diagnostic apparatus uses the pixel value of each of the pixels found in a predetermined range relative to a reference position of image data as input matrix and computes an output value corresponding to the input at its image processing section. Thereafter, the sorting filter of the image processing section sorts the elements of each row of the input matrix on a column by column basis. Then, it extracts a partial matrix having the row including the reference position and surrounding rows from the matrix obtained as a result of the sorting and having a number of rows smaller than number of rows of the input matrix and a number of columns same as the number of columns of the input matrix. Furthermore, it computationally determines the median of the elements of the partial matrix and outputs the median as the output value.
摘要:
A communication system for obtaining predetermined information from an underwater terminal via a sonobuoy is provided. The system includes an underwater terminal for transmitting and receiving sound wave signals, a base station apparatus for transmitting and receiving radio wave signals, and a plurality of sonobuoys for transmitting and receiving the sound wave signals to and from the underwater terminal, and for transmitting and receiving the radio wave signals to and from the base station apparatus.
摘要:
An ultrasonic apparatus has a pulse transmission and reception unit, an envelope curve detection unit, a time difference detection unit, and an attenuation characteristic obtaining unit. The pulse transmission and reception unit transmits a first transmitted pulse that a frequency increases with time and a second transmitted pulse that the frequency decreases with time, further receives a first received pulse corresponding to the first transmitted pulse and a second received pulse corresponding to the second transmitted pulse. The envelope curve detection unit detects a first envelope curve based on the first received signal and a second envelope curve based on the second received signal, respectively. The time difference detection unit detects a time difference between the first envelope curve and the second envelope curve. The attenuation characteristic obtaining unit obtains a frequency dependent-attenuation characteristic of an ultrasonic base on the time difference.
摘要:
When the mode is set to a strobe consecutive shooting mode, an imaging apparatus sets the mode to a pixel addition drive mode for reading out image data using pixel addition drive, performs metering operation using preliminary flashing and calculates an appropriate amount of flashing on the basis of the metering operation. Next, the imaging apparatus judges whether or not it is possible to flash three times consecutively with the calculated amount of flashing. If it is judged that it is not possible to flash three times consecutively with the calculated amount of flashing, the imaging apparatus limits the amount of flashing to the largest amount of flashing within the range of amounts of flashing with which flashing of strobe light three times consecutively is possible, and performs strobe consecutive shooting with the limited amount of flashing.
摘要:
Three layers are formed on a TFT substrate SUB 100. The three layers include a first transparent electrode PSL1 131, a second transparent electrode CSL 127 and a third transparent electrode PSL2 132, all of which are laminated in parallel to the substrate surface. Two auxiliary capacitances to a liquid crystal capacitance are formed between the first transparent electrode PSL1 131 and the second transparent electrode CSL 127 and between the second transparent electrode CSL 127 and the third transparent electrode PSL2 132.
摘要:
An imaging device of the present invention comprises a photographing lens for forming a subject image, an imaging section for converting the subject image to image signals and outputting the image signals, a storage section for storing image data obtained based on the image signals output from the storage section, an attitude detection section for detecting an attitude of the imaging device, an image detection section for detecting a face image contained in the image signals, and a storage control section for determining storage start and storage end for the image data, based on detection results of the attitude detection section and detection results of the image detection section.
摘要:
An image display device capable of high-resolution and smooth moving image display, equipped with TFTs in an n-type (or p-type) semiconductor layer with a high on-off ratio and a low resistance. In polysilicon crystallization by laser annealing, an n-type (or p-type) semiconductor layer with a low resistance is produced by performing the following processes in order: implanting nitrogen (N) ions into an amorphous silicon precursor semiconductor film; laser crystallization; implanting n-type (or p-type) dopant ions; and annealing for dopant activation. When fabricating TFTs, this low-resistance semiconductor layer is used to form a source and a drain. Since C, N, and O impurities decrease the mobility of the TFTs, polysilicon is used in which the contaminants concentrations meet the following conditions: carbon concentration ≦3×1019 cm−3, nitrogen concentration ≦5×1017 cm−3, and oxygen concentration ≦3×1019 cm−3.