Abstract:
A flow-through capacitor and a controlled charge chromatography column system using the capacitor for the purification of a fluid-containing material, which column comprises an inlet for a fluid to be purified and an outlet for the discharge of the purified fluid, and a flow-through capacitor disposed within the column. The flow-through capacitor comprises a plurality of spirally-wound, stacked washer or rods to include a first electrically conductive backing layer, such as of graphite, and a first high surface area conductive layer secured to one side of the backing layer, such as carbon fibers, and a second high surface area conductive layer secured to the opposite side of the backing layer, the high surface area material layers arranged to face each other and separated by a nonconductive, ion-permeable spacer layer to insulate electrically the backing and conductive layer. The system includes a DC power source to charge the respective conductive layers with different polarities whereby a fluid-containing material passing through the column is purified by the electrically conductive, high surface area stationary phase and the retention thereof onto the high surface area layer and permitting, for example, the purification of aqueous solutions of liquids, such as salt, and providing for the recovery of a purified liquid.
Abstract:
A method for the combined removal and destruction of nitrate ions in an electrochemical cell which includes an anode compartment containing electrolyte and an anode, a cathode compartment containing electrolyte and a cathode, and a central compartment containing an anion exchange resin, the central compartment being separated from the anode compartment and the cathode compartment by respective anion permeable membranes, includes the steps of(i) passing an aqueous solution containing nitrate ions through the anion exchange resin in the central compartment of the cell,(ii) passing an electric current through the cell in order to cause the nitrate ions captured on the anion exchange resin to migrate into the anode compartment of the cell, and(iii) destroying the nitrate ions by subjecting them to reduction and oxidation reactions to form nitrogen and oxygen or water.Step (i) may be replaced by passing an anion exchange resin washed with nitrate ion through the central compartment of the electrochemical cell.
Abstract:
Purified resin particles are provided in an electrodeionization step for purifying resin particles having ion depletion compartments containing the resin particles and ion concentration compartments. Purified water having a purity of at least 1 megohm-cm is introduced into the ion depletion compartments and water for accepting ionic impurities is introduced into the ion concentration compartments. The electrodeionization step for purifying resin particles is conducted under condition to dissociate water into hydrogen ions and hydroxyl ions. The purified water is produced in an initial water purification step which also can be an electrodeionization step. The water effluent from the ion depletion compartment can be recycled either to the initial water purification step or to the inlets of the ion depletion compartments in the resin particle purification process. The electrodeionization step comprising the initial water purification step is conducted under conditions to minimize or prevent hydrogen ion and hydroxyl ion formation.
Abstract:
An electrode for use in electrochemical ion exchange comprises an electrically conducting element covered by at least two layers of ion exchange material. The material in one layer differs in its electrical, chemical, or ion exchange properties from that in an adjacent layer. For example a thin layer of cation exchange material underneath a thicker layer of anion exchange material may be used to inhibit the oxidation of chloride ions; a thin layer of cation exchange material covering a thicker layer of anion exchange material provides an anion-responsive electrode with enhanced selectivity for particular ions. An ion-selective anion-responsive electrode can also comprise a thin outer layer of a very weak base anion-responsive material, covering a thicker layer of a strong base material of lower electrical resistivity.
Abstract:
An apparatus for treating a liquid by electrochemical ion exchange comprises a flow channel (34) in which are arranged a cation-responsive ion exchange electrode (38) side by side with an anion-responsive ion exchange electrode (42), with a counter electrode (40,44) between them. By controlling the currents to the two ion exchange electrodes (38,42) independently, the pH of the treated liquid can be controlled at a desired value.
Abstract:
The invention relates to an apparatus for removing cations/anions from liquids, having a container material between a cathode and the layer of ion exchange material between the anode and the cathode and a free liquid-filled space as a treatment space between the layer of ion exchange material and the cathode and a liquid-filled outer space between the cathode and the wall of the container, the treatment space and the outer space being connected to one another at both ends in order to permit liquid circulation.
Abstract:
Apparatus and method for introducing ion-exchange and other particulates into certain compartments of an assembled electrodeionization stack comprising flowing a slurry of said particulates into the compartments while employing strainers for particulate retention so as to form a packed bed in the compartments; also apparatus and method for flowing said particulates out of said stack in the form of a slurry.
Abstract:
An electrodeionization apparatus is provided for removing ions from liquids. Liquid to be purified is passed through at least two ion depletion compartments containing mixed anion and cation exchange resin beads in a given separation stage. A second liquid is passed through concentration compartments free of ion exchange resin beads. Ions under the influence of D.C. potential pass from the depletion compartments into the concentration compartments through ion permeable membranes. The beads in the depletion compartments are housed within subcompartments of controlled width and thickness and are retained therein by the ion permeable membranes which are secured to the walls of the subcompartments.
Abstract:
An electrodeionization apparatus and process are provided for removing ions from liquids. Liquid to be purified is passed through depleting compartments containing mixed anion and cation exchange resin beads while a second liquid is passed through concentrating compartments free of ion exchange resin beads. Ions, under influence of a D.C. potential, pass from the depleting compartments into the concentrating compartments through ion permeable membranes. The beads in the depleting compartments are housed within subcompartments of controlled width and thickness and are retained therein by the ion permeable membranes which are secured to the wall of the subcompartments.
Abstract:
A method for removing chloride ions from an anion exchange resin to provide extremely low residual chloride concentration and comprises placing the resin in a cathode cell of an electrolytic cell, the electrolytic cell having an anode and a cathode, and anode and cathode cells being separated by an anion selective permeable membrane. Catholyte is flowed through the resin containing cathode cell and anolyte is flowed through the anode cell while a direct current is applied across the anode and cathode. Chloride or chlorine gas derived from the resin is removed from the anode cell.