Abstract:
There is provided a method for enabling a user equipment to transmit feedback information. The method includes generating feedback data representing the feedback information, the feedback data expressed by a binary number having N bits, where N is an integer, the N bits comprising 2 levels, the feedback information represented by one of the 2 levels, wherein different types of the feedback information are assigned to different levels and transmitting the feedback data. Overheads incurred by transmission of feedback information can be reduced.
Abstract:
Provided are a method and apparatus for allocating a plurality of layers to a plurality of antenna ports in a wireless communication system. The method comprises: mapping the plurality of layers to the respective antenna ports; and mapping demodulation reference signals (DMRS) of the plurality of layers to a first code division multiplexing (CDM) set or to a second CDM set, and transmitting the signals via the plurality of antenna ports.
Abstract:
A wireless transmit/receive unit (WTRU) receives a downlink transmission from an eNodeB including a plurality of spatial layers transmitted to a plurality of WTRUs paired for multi-user MIMO. The WTRU decodes the downlink transmission based on a corresponding WTRU-specific reference signal. WTRU-specific reference signals are multiplexed using a frequency and code division multiplexing. WTRU-specific reference signals for different sub-group of antenna ports are multiplexed onto different subcarriers in a frequency domain and the WTRU-specific reference signals of the same sub-group of antennas ports are multiplied by an orthogonal cover code. The resource elements used for the WTRU-specific reference signals on antenna ports in one sub-group may be muted on antenna ports in another sub-group. A WTRU may transmit the uplink demodulation reference signal without precoding. The number of resource blocks allocated for the demodulation reference signal may be greater than the number of resource blocks allocated for the payload.
Abstract:
Methods and systems for sending and receiving an enhanced downlink control channel are disclosed. The method may include receiving control channel information via an enhanced control channel. The method may also include using the control channel information to receive a shared channel. The method may include detecting the presence of the enhanced control channel in a given subframe. The enhanced control channel may be transmitted over multiple antenna ports. For example, code divisional multiplexing and de-multiplexing and the use of common and UE-specific reference signals may be utilized. New control channel elements may be defined, and enhanced control channel state information (CSI) feedback may be utilized. The presence or absence of legacy control channels may affect the demodulation and or decoding methods. The method may be implemented at a WTRU.
Abstract:
Disclosed is a method for transmitting control information on uplink multi-antenna transmission from a base station and the method includes: transmitting DCI that schedules uplink transmission of a first data block and a second data block through a PDCCH; receiving the first and second data blocks scheduled by the DCI; transmitting information indicating ACK or NACK for the received first and second data blocks, respectively, by using a first PHICH for the first data block and a second PHICH resource for the second data block; receiving a retransmission for a negative-acknowledged data block; and transmitting information indicating ACK or NACK of the retransmission of the negative-acknowledged data block by using the first PHICH resource when the number of negative-acknowledged data blocks is not identical to the number of data blocks that the PDCCH indicates.
Abstract:
A method for transmitting and receiving channel state information (CSI) periodically and aperiodically is disclosed. The method for aperiodically transmitting channel state information (CSI) by a terminal includes receiving an indicator requesting a channel state information report of a downlink channel from a base station over a downlink control channel, and aperiodically transmitting the channel state information (CSI) to the base station over a physical uplink shared channel (PUSCH) upon receiving the indicator from the base station.
Abstract:
The present invention relates to a method for transmitting control information regarding uplink multiple antenna transmission may comprise the steps of: transmitting DCI for scheduling the uplink transmission of a plurality of data blocks through a PDCCH; receiving the plurality of data blocks scheduled by the DCI; transmitting information which indicates positive acknowledgement or negative acknowledgement to each of the plurality of received data blocks through the PHICH; and receiving retransmission for the negative acknowledged data blocks. When the number of the negative-acknowledged data blocks is not equal to the number data blocks indicated in the PDCCH, a pre-coding matrix, which is for the number of transmission layers equivalent to that of layers corresponding to the negative-acknowledged data blocks, may be used for retransmission.
Abstract:
The present invention relates to a wireless communication system, and more particularly, a method and device for providing control information for uplink transmission in a wireless communication system supporting uplink multi-antenna transmission. An uplink multi-antenna transmission scheduling method, according to one embodiment of the present invention, comprises the following steps: creating downlink control information (DCI) containing respective modulation and coding scheme (MCS) information for a first and a second transport block; transmitting said created downlink control information, which schedules uplink transmissions from one or more of first and second transport blocks through a downlink control channel; and receiving uplink transmission, scheduled according to the downlink control information, through an uplink data channel, wherein one transport block can be disabled, if MCS information for one transport block among of the first or the second transport blocks has a predetermined value.
Abstract:
The present invention relates to a method in which user equipment transmits a non-periodic sounding reference signal in a wireless communication system. In detail, the method comprises: a step of receiving a downlink control channel from a base station; a step of decoding a downlink control information (DCI) format contained in the downlink control channel; a step of checking a non-periodic sounding reference signal transmission instruction in the DCI format; and a step of transmitting a non-periodic sounding reference signal to the base station in accordance with the transmission instruction. Preferably, if the downlink control channel is received via an nth subframe, the non-periodic sounding reference signal is transmitted via an (n+k)th subframe (where k≦4).
Abstract:
A method for efficiently transmitting and receiving feedback information is disclosed. A cluster size as a unit for computing the feedback information and a reporting period of the feedback information are not uniformly determined by a base station. Information about a downlink channel status of each user equipment is reported, the cluster size and feedback period for computing and reporting the feedback information are determined using the information about the downlink channel status of each user equipment, and the feedback information is transmitted/received, thereby improving system capability.