Abstract:
Communication methods of a base station and a terminal are provided. The communication method of the base station includes receiving feedback information including ray gain information from a terminal, configuring a Radio Frequency (RF) precoder to minimize a Frobenius norm of a total transmit precoder of the base station, and configuring a baseband precoder based on Zero-Forcing (ZF). The communication method of the terminal includes receiving a pilot signal from a base station; estimating a channel of the terminal using the pilot signal; configuring ray gain information based on information of the estimated channel; and feeding back a codebook index corresponding to the ray gain information to the base station.
Abstract:
A polymer electrolyte for a lithium battery, the polymer electrolyte comprising a compound represented by Formula 1: wherein, in Formula 1, X1 to X6, Ar1, Ar2, R1, R2, m, and n are the same as defined in the detailed description of the present specification.
Abstract:
An electrolyte for a lithium air battery includes a compound represented by Formula 1 wherein the definitions of A and R1-R10 are disclosed herein. Also a lithium air battery including an anode, a cathode, and at least one selected from the herein-described electrolyte and a reaction product thereof.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). The present disclosure relates to channel information feedback in a wireless communication system, and an operation method of a receiving node includes: determining compressed channel information based on an eigenvalue decomposition of a covariance matrix regarding a channel, and transmitting, to a transmitting node, a direction index and a magnitude index representing the compressed channel information. Herein, a dimension of the compressed channel information is lower than a dimension of channel information associated with the transmitting node. Also, the disclosure includes other embodiments, different from the above described embodiment.
Abstract:
A cathode for a lithium air battery, the cathode including: an organic-inorganic composite material including a coating layer on at least one portion of a surface thereof, wherein the coating layer includes a positively charged silane compound and an ionic bond forming anion. Also a lithium air battery including the same, and a method of manufacturing the cathode.
Abstract:
A metal-air battery cell includes: a negative electrode metal layer; a positive electrode layer configured to use oxygen as an active material for which a reduction/oxidation reaction of oxygen introduced thereto occurs; a negative electrode electrolyte film disposed between the negative electrode metal layer and the positive electrode layer in a thickness direction; and a channel layer disposed on the positive electrode layer and comprising a plurality of channel structures, the channel structures each elongated to extend in an extension direction crossing the thickness direction.
Abstract:
A metal-air battery includes a monolithic body including at least one channel; and at least one cell disposed between the channel and the body, the cell including a negative electrode including a metal, a positive electrode disposed apart from the negative electrode and configured to use oxygen as an active material, and an electrolyte disposed between the negative electrode and the positive electrode.
Abstract:
The present invention relates to a power control method for transmission beams in a wireless communication system using a beam-forming technique and a device for supporting same. A method of controlling power by a base station according to an embodiment of the present invention includes: determining at least one transmission beam to use for at least one sub carrier; determining an output power gain adjustment value for each of the transmission beams based on information on the transmission beams; and applying the output power gain adjustment value to each of the transmission beams. According to the present invention, if the number of transmission beams varies depending on the situation, there is the effect that it is possible to equally control an output power value irrespective of the number of beams.
Abstract:
A switch in an electronic device includes a substrate, a first signal line, a second signal line, and a ground bridge. The first signal line is on the substrate and extends in a first direction. The second signal line is on the substrate and is spaced apart from the first signal line in a first direction parallel with the first signal line to branch the wireless communication signal at a first point and a second point of the first signal line. The ground bridge is at least partially movable in a space between the first signal line and the second signal line. A first capacitor is between a first point of the first signal line and one end of the second signal line, and a second capacitor is between a second point of the first signal line and the other end of the second signal line.
Abstract:
In a method of manufacturing a semiconductor device, a ferroelectric layer may be formed on a first region of a substrate, the substrate including the first region and a second region. A gate insulation layer may be formed on and contacting an upper surface of the ferroelectric layer and on an upper surface of the second region of the substrate. A first conductive layer and a second conductive layer may be sequentially stacked on the gate insulation layer. The second conductive layer and the first conductive layer may be patterned to form first and second gate electrode structures on the first and second regions, respectively, of the substrate.