Abstract:
A photodetector of the invention is characterized by having a plurality of detector elements that are arranged over a light-transparent substrate and are connected in parallel. A foldable portable communication tool having two display portions of the invention is characterized by including one photodetector which includes a plurality of detector elements connected in parallel.
Abstract:
A portable UV detector is provided having a printed circuit board, a display module and multiple batteries housed in a cylindrical body. A display panel window is located on the external wall of the cylindrical body to mount the display module with an appropriate UV level indicator. A light detector located underneath the filtering lens is enabled at the push of a button to measure the intensity of incoming UV light and display a corresponding level on the display module.
Abstract:
An instrument and method for optically calibrating and balancing low level luminances of lighted instrument panel displays within the operator station of a vehicle is described which comprises a self-contained, calibrated luminance source and a beamsplitter for combining and juxtaposing an image of the calibrated luminance source with an image of the luminance from a lighted instrument panel display to be calibrated or balanced, whereby the images may be compared in luminance, the lighted instrument panel display being adjustable in intensity using the vehicle instrument panel light trim capability.
Abstract:
The meter senses flashes of illumination, it converts the illumination to an electrical current whose magnitude is proportional to the intensity of the illumination; it integrates the current over a period of time corresponding to a selected shutter speed by charging a capacitor; it discharges the capacitor and measures the time required to do so; it converts the time required to discharge the capacitor into a corresponding signal representative of an appropriate camera aperture setting for a preselected film sensitivity and shutter speed via a microprocessor and a stored data program; and then displays the camera aperture setting on a multi-segment display. This process is repeated with each new flash of illumination automatically. The meter also measures multiple flashes and displays an accumulated camera aperture setting as well as the number of flashes needed to accumulate that setting.
Abstract:
Method, product and blocking element of short wavelengths in LED-type light sources consisting of a substrate with a pigment distributed on its surface and, in that said pigment has an optical density such that it allows the selective absorption of short wavelengths between 380 nm and 500 nm in a range between 1 and 99%.
Abstract:
A portable electronic device includes a housing, a front cover defining a front side of the portable electronic device, a display stack below the front cover and comprising a plurality of display layers configured to produce a graphical output in a display region of the display stack, the graphical output visible through the front cover, and a light sensor module positioned at least partially within the housing and coupled to the display stack in the display region. The light sensor module may be configured to receive ambient light passing through the front cover and through the plurality of display layers and, while a blanking interval is positioned over the light sensor module, produce an output corresponding to the received ambient light, the portable electronic device configured to determine an ambient light value based at least in part on the output from the light sensor module.
Abstract:
An electronic device may have a display with a cover layer. An ambient light sensor may be aligned with an ambient light sensor window formed from an opening in a masking layer on the cover layer in an inactive portion of the display. To help mask the ambient light sensor window from view, the ambient light sensor window may be provided with a black coating that matches the appearance of surrounding masking layer material while allowing light to reach the ambient light sensor. The black coating may be formed from a black physical vapor deposition thin-film inorganic layer with a high index of refraction. An antireflection layer formed from a stack of dielectric layers may be interposed between the black thin-film inorganic layer and the display cover layer.
Abstract:
An ultraviolet measurement system includes a measurement device that is configured to be portable by a user, and measures ultraviolet information regarding an ultraviolet ray, and a display device that can perform communication with the measurement device, in which one of the measurement device and the display device includes a position acquisition unit that acquires position information indicating a position of either of the user and the measurement device, and a storage unit that stores the ultraviolet information measured by the measurement device in correlation with measurement position information which is position information of when the ultraviolet information is measured by the measurement device among pieces of position information acquired by the position acquisition unit, and in which the display device displays information based on the ultraviolet information and the measurement position information.
Abstract:
An electronic device includes a housing and one or more processors. At least one proximity sensor component is operable with the one or more processors and includes an infrared signal receiver to receive an infrared emission from an object external to the housing. At least one proximity detector component is also operable with the one or more processors and includes a signal emitter and corresponding signal receiver. The one or more processors can actuate the at least one proximity detector component when the at least one proximity sensor component receives the infrared emission from the object.