Abstract:
Methods, systems and apparatus for an electric motor assist bicycle having a hub motor mounted to the front or rear hub to provide electric motor assist, and to function as a generator to charge batteries. The motor can be either a molded or wound magnetic flux channel transverse wound stator permanent magnet motor. The bicycle hub motor includes an electronic controller mounted to the frame of the bicycle and coupled with feedback electronics for monitoring a timing, speed and direction and coupling a signal to a processing unit for adjusting the drive electronics driving the phase windings. The pedal crank arm housing of the electric motor assist bicycle can include battery access ports with batteries stacked inside the bicycle seat tube and the down tube and a strain gauge to measure the rider pedaling effort and produce a signal in response.
Abstract:
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of laminated materials, for example laminated materials configured with cuts and/or segmentations. Segmentations may also assist with manufacturability, mechanical retention of components, and the like.
Abstract:
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of a dual wound coil. The coil ends of a dual wound coil can be on a common side, simplifying wiring. The dual wound coil may be configured with a low resistance, reducing resistive losses.
Abstract:
The present invention is a apparatus of multi-unit modular stackable switched reluctance motor system with parallely excited low reluctance circumferential magnetic flux loops for high torque density generation. For maximized benefits and advanced motor features, the present invention takes full combined advantages of both SRM architecture and “Axial Flux” architecture by applying “Axial Flux” architecture into SRM design without using any permanent magnet, by modularizing and stacking the “Axial Flux” SRM design for easy configuration and customization to satisfy various drive torque requirements and broad applications, and by incorporating an en energy recovery transformer for minimizing switching circuitry thus further lowering the cost and further increasing the reliability and robustness. Unlike prior arts, the present invention does not use any permanent magnet and this “Axial Flux” SRM system is modularized and stackable with many benefits.
Abstract:
A switched reluctance machine (SRM) having a rotor and stator pole numerical relationship of S number of stator poles and R number of rotor poles, where R=2S−2, when S is greater than 4; provides improved power density, torque production, torque ripple, and is readily adaptable to existing hardware such as known controllers and the like.
Abstract:
The present invention essentially relates to an electric machine (1.1) with homopolar double excitation, comprising a rotor particularly consisting of a central portion (51) made of a solid magnetic material and a laminated annular portion (53) located at the periphery of the solid portion. In addition, the rotor comprises permanent magnets (54), the magnetisation thereof being radially oriented relative to the axis (33) of the rotor (31), and separated from one another such that the double excitation flow generated by the field coils (38, 39) can enter the rotor (31, 67) via the flanges (48, 49) of the rotor, and come back out via the spaces between the magnets (54), or vice-versa.
Abstract:
Disclosed are single- and poly-phase transverse and/or commutated flux machines and components thereof, and methods of making and using the same. Exemplary devices, including polyphase devices, may variously be configured with an interior rotor and/or an interior stator. Other exemplary devices, including polyphase devices, may be configured in a slim, stacked, and/or nested configuration. Via use of such polyphase configurations, transverse and/or commutated flux machines can achieve improved performance, efficiency, and/or be sized or otherwise configured for various applications.
Abstract:
An electrical machine which has a moving part and a stationary part. The moving part is in the form of an inner rotor without windings, and the rotor which has at least two magnetic conductors, which are separated from one another axially such that impeller wheels are formed. The stationary part has a number of magnetically acting webs in the circumferential direction of the machine. The webs are operatively connected to the magnetic conductors of the rotor. The stationary part has at least one first winding structure which is likewise operatively connected to the axially separated magnetic conductors of the rotor. In addition, a second winding structure is included on the webs wherein either the first winding structure acts as an armature winding and the second winding structure acts as a field winding, or vice versa. The impeller wheels are radially innerly magnetically effectively connected by means of a further magnetic conductor.
Abstract:
Disclosed herein is an inner rotor type permanent magnet excited transverse flux motor, in which a laminated structure in an axial direction or in a radial shape is applied to a stator iron core so as to employ a small amount of permanent magnets compared with a conventional outer rotor type permanent magnet excited transverse flux motor, thus providing high output power, increasing the efficiency of power generation, and reducing noise and vibration. For this, the present invention provides an inner rotor type permanent magnetic excited transverse flux motor comprising: a stator including a stator powdered iron core press-molded using a mold, a stator laminated iron core laminated on upper and lower layer portions of the circumference of the stator powdered iron core at regular intervals, and a stator winding which winds the segmented stator powdered iron core in which a current flows is wound between the intervals; and a rotor in which a rotor permanent magnet and a rotor powdered iron core are arranged alternately to face each other.
Abstract:
An alternator has a rotor to be associated with a prime mover shaft and driven for rotation. The rotor is provided with permanent magnets. A stator has pole pieces, including a main winding and flux diverters separating the main winding from a control coil. Control is provided for controlling the power passing through the control coil. The alternator is a transverse flux machine. A vehicle power system including the alternator is also disclosed.