METHOD AND SYSTEM FOR DETECTING ANALYTE OF INTEREST USING MAGNETIC FIELD SENSOR AND MAGNETIC PARTICLES

    公开(公告)号:US20220178919A1

    公开(公告)日:2022-06-09

    申请号:US17037162

    申请日:2020-09-29

    Abstract: A method, system, and apparatus for the rapid detection of analyte(s) of interest are disclosed which can provide high sensitivity quantification of the analyte concentration in a lateral follow assay. The method includes labeling detection molecules with magnetic particles and immobilizing the magnetic particles on a nitrocellulose membrane upon specific biochemical recognition and binding. An external magnetic field is applied to the magnetic particles to induce magnetic induction, and a magnetoresistance sensor is positioned close to the membrane and magnetic particles. A periodic signal in the sensor is produced when a mechanical oscillatory movement is provided to the membrane relative to the sensor (or vice versa). Triggered time averaging of signals in synchronization with the oscillatory motion enables noise reduction of less than 30 dB and significant improvement of assay sensitivity. An x-y motion program for scanning the test line and control line on the membrane can produce magnetic 2D mapping of the lines, further differentiating the bound particles at the lines from unbound particles in the background, rendering a more accurate assay.

    PRECISION LIGHT SOURCE
    162.
    发明申请

    公开(公告)号:US20210194210A1

    公开(公告)日:2021-06-24

    申请号:US17113409

    申请日:2020-12-07

    Abstract: A pulse transformer for modifying the amplitude and phase of short optical pulses includes a pulse source and an adaptively controlled stretcher or compressor including at least one fiber Bragg grating (FBG) configured to receive pulses from the pulse source and having a first second-order dispersion parameter (D21). The pulse transformer further includes at least one optical amplifier configured to receive pulses from the FBG and a compressor configured to receive pulses from the at least one optical amplifier. The compressor has a second second-order dispersion parameter (−D22), an absolute value of the first second-order dispersion parameter (|D21|) and an absolute value of the second second-order dispersion parameter (|−D22|) that are substantially equal to one another to within 10%.

    STABLE DIFFERENCE FREQUENCY GENERATION USING FIBER LASERS

    公开(公告)号:US20190079368A1

    公开(公告)日:2019-03-14

    申请号:US16191127

    申请日:2018-11-14

    Abstract: Systems and methods for stabilizing mid-infrared light generated by difference frequency mixing may include a mode locked Er fiber laser that generates pulses, which are split into a pump arm and a wavelength shifting, signal arm. Pump arm pulses are amplified in Er doped fiber. Shifting arm pulses are amplified in Er doped fiber and shifted to longer wavelengths in Raman-shifting fiber or highly nonlinear fiber, where they may be further amplified by Tm doped fiber, and then optionally further wavelength shifted. Pulses from the two arms can be combined in a nonlinear crystal such as orientation-patterned gallium phosphide, producing a mid-infrared difference frequency, as well as nonlinear combinations (e.g., sum frequency) having near infrared and visible wavelengths. Optical power stabilization can be achieved using two wavelength ranges with spectral filtering and multiple detectors acquiring information for feedback control. Controlled fiber bending can be used to stabilize optical power.

    Large core holey fibers
    165.
    发明授权

    公开(公告)号:US10197727B2

    公开(公告)日:2019-02-05

    申请号:US15485025

    申请日:2017-04-11

    Abstract: Holey fibers provide optical propagation. In various embodiments, a large core holey fiber comprises a cladding region formed by large holes arranged in few layers. The number of layers or rows of holes about the large core can be used to coarse tune the leakage losses of the fundamental and higher modes of a signal, thereby allowing the non-fundamental modes to be substantially eliminated by leakage over a given length of fiber. Fine tuning of leakage losses can be performed by adjusting the hole dimension and/or spacing to yield a desired operation with a desired leakage loss of the fundamental mode. Resulting holey fibers have a large hole dimension and spacing, and thus a large core, when compared to traditional fibers and conventional fibers that propagate a single mode. Other loss mechanisms, such as bend loss and modal spacing can be utilized for selected modes of operation of holey fibers.

    INTEGRATED PHOTONIC MICROWAVE TRANSCEIVER SYSTEM

    公开(公告)号:US20190028203A1

    公开(公告)日:2019-01-24

    申请号:US16038644

    申请日:2018-07-18

    Abstract: Examples of systems and methods for integrated photonic broadband microwave transceivers are disclosed based on integrated coherent dual optical frequency combs. In some cases, when the system is configured as a transmitter, multiple radio frequency (RF) carriers can be generated, which can either be encoded independently, or used for broadcasting the same information into different bands. In some cases, when the system is configured as a receiver, the spectrum of the input signal can be sliced into several spectral segments for low-bandwidth detection and analysis. In some systems, the optics-related functionalities can be achieved via integrated optic technology, for example based on silicon photonics, providing tremendous possibilities for mass-production with significantly reduced system footprint.

    Laser-based modification of transparent materials

    公开(公告)号:US10137527B2

    公开(公告)日:2018-11-27

    申请号:US15208374

    申请日:2016-07-12

    Abstract: In certain embodiments a method and system for laser-based material processing of a material is disclosed. In at least one preferred implementation temporally overlapping pulse series are generated with separate pulsed laser sources, for example nanosecond (NS) and ultrashort pulse (USP) sources (NS-USP). Pulses are delivered to the material as a series of spatially and temporally overlapping pulse pairs. The material can, but need not, be a transparent material. In some applications of transparent material processing, it was found the combination of pulses both substantially more material modification and high machining quality than obtainable with either individual pulse series taken alone. Other micromachining methods and arrangement are disclosed for formation of fine features on or within a substrate. Such methods and arrangements may generally be applied with a NS-USP combination, or with other sources.

    ULTRA-LOW NOISE PHOTONIC PHASE NOISE MEASUREMENT SYSTEM FOR MICROWAVE SIGNALS

    公开(公告)号:US20180180655A1

    公开(公告)日:2018-06-28

    申请号:US15901186

    申请日:2018-02-21

    Abstract: Systems and methods for precision phase noise measurements of radio frequency (RF) oscillators are provided. An RF signal under test can be modulated on a continuous wave (cw) laser carrier frequency via generation of modulation sidebands using an appropriate modulator. A photonic delay line can be implemented as a self-heterodyne detection system for the phase noise, allowing for photonic down-conversion of the phase noise measurement to direct current (DC). The self-heterodyne detection system allows detection outside of any 1/f noise issues. Ultra-low phase noise detection for RF frequencies in a range from below 1 GHz to beyond 100 GHz is enabled with a low noise floor in the whole frequency range. Higher-order modulation sidebands can further reduce the noise floor of the system. Ultra-low noise RF (microwave) output can be generated. The RF signal under test can be generated by a dielectric resonance oscillator or opto-electronic oscillator.

Patent Agency Ranking