Abstract:
A wireless electronic device may be provided with antenna structures. The antenna structures may be formed from an antenna ground and an array of antenna resonating elements formed along its periphery. The antenna resonating elements may be formed from metal traces on a dielectric support structure that surrounds the antenna ground. The electronic device may be tested using a test system for detecting the presence of manufacturing/assembly defects. The test system may include an RF tester and a test fixture. The device under test (DUT) may be attached to the test fixture during testing. Multiple test probes arranged along the periphery of the DUT may be used to transmit and receive RF test signals for gathering scattering parameter measurements on the device under test. The scattering parameter measurements may then be compared to predetermined threshold values to determine whether the DUT contains any defects.
Abstract:
Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include a dual arm inverted-F antenna resonating element and an antenna ground. An antenna feed may be coupled between the inverted-F antenna resonating element and the antenna ground. An adjustable component such as an adjustable inductor may be coupled between the inverted-F antenna resonating element and the antenna ground in parallel with the antenna feed. The adjustable component may be operable in multiple states such as an open circuit state, a short circuit state, and a state in which the adjustable component exhibits a non-zero inductance. Antenna bandwidth can be broadened by coupling a loop antenna resonating element across the antenna feed. A portion of the antenna ground may overlap the loop antenna resonating element to further enhance antenna bandwidth.
Abstract:
Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may form a dual arm inverted-F antenna and a monopole antenna sharing a common antenna ground. The antenna structures may have three ports. A first antenna port may be coupled to an inverted-F antenna resonating element at a first location and a second antenna port may be coupled to the inverted-F antenna resonating element at a second location. A third antenna port may be coupled to the monopole antenna. Tunable circuitry can be used to tune the antenna structures. An adjustable capacitor may be coupled to the first port to tune the inverted-F antenna. An additional adjustable capacitor may be coupled to the third port to tune the monopole antenna. Transceiver circuitry for supporting wireless local area network communications, satellite navigation system communications, and cellular communications may be coupled to the first, second, and third antenna ports.
Abstract:
A test system may include test stations for testing the radio-frequency performance of wireless electronic devices. A reference test station may perform test measurements on a group of wireless electronic devices under test (DUTs) to select a reference DUT. The reference test station may gather radio-frequency measurements at a number of test frequencies from the group of DUTs. The reference test station may compute statistical data associated with the gathered measurements. The reference test station may compute weight values associated with each test frequency based on the statistical parameters. The reference test station may compute a weighted mean square error value for each DUT based on the weight values and the statistical data. The reference test station may select a DUT having a minimum weighted mean square error value to serve as the reference DUT, which may be used to calibrate test stations in the test system.
Abstract:
An electronic device may be provided with wireless circuitry and a housing having peripheral conductive housing structures. The wireless circuitry may include first and second antennas. The first antenna may have a resonating element arm formed from a first segment of the peripheral conductive housing structures. The second antenna may have a resonating element arm formed from a second segment of the peripheral conductive housing structures separated from the first segment by a gap. Switchable short paths may be coupled between the second segment and ground on opposing sides of an antenna feed for the second antenna and/or may be coupled between the first and second segments and ground on opposing sides of the gap. Additionally or alternatively, a switch may be coupled between the first and second segments across the gap and a tuning component may couple the second segment to the ground structures.
Abstract:
An electronic device may have a cover layer and an antenna. A dielectric adapter may have a first surface coupled to the antenna and a second surface pressed against the cover layer. The cover layer may have a three-dimensional curvature. The second surface may have a curvature that matches the curvature of the cover layer. Biasing structures may exert a biasing force that presses the antenna against the dielectric adapter and that presses the dielectric adapter against the cover layer. The biasing force may be oriented in a direction normal to the cover layer at each point across dielectric adapter. This may serve to ensure that a uniform and reliable impedance transition is provided between the antenna and free space through the cover layer over time, thereby maximizing the efficiency of the antenna.
Abstract:
This is directed to connecting two or more elements using an intermediate element constructed from a material that changes between states. An electronic device can include one or more components constructed by connecting several elements. To provide a connection having a reduced or small size or cross-section and construct a component having high tolerances, a material can be provided in a first state in which it flows between the elements before changing to a second state in which it adheres to the elements and provides a structurally sound connection. For example, a plastic can be molded between the elements. As another example, a composite material can be brazed between the elements. In some cases, internal surfaces of the elements can include one or more features for enhancing a bond between the elements and the material providing the interface between the elements.
Abstract:
An electronic device may be provided with a sensor module and an antenna having an antenna arm, ground structures, and a tuner. The tuner may be mounted to a printed circuit overlapping the sensor module. A spring may be mounted to the printed circuit and may couple the tuner to a conductive chassis of the sensor module. The sensor module may include optical sensors that gather sensor data through a display and may form ground paths from the tuner to the ground structures. Conductive interconnect structures such as springs may exert biasing forces in different directions to couple the ground paths to different layers of the ground structures. This may serve to couple the antenna to the ground structures as close as possible to the tuner, thereby maximizing antenna performance, despite the presence of the sensor module.
Abstract:
An electronic device may include an antenna disposed on a substrate. The antenna may include a ring of conductive traces, a fed arm, and an unfed arm. The fed arm and the unfed arm may extend from opposing segments of the ring. The ring may be coupled to ground by fences of conductive vias extending through the substrate. The first arm may have a first radiating edge. The second arm may have a second radiating edge. The first radiating edge may be separated from the second radiating edge by a gap. The first arm may indirectly feed the second arm via near-field electromagnetic coupling across the gap. The first and second arms may collectively radiate in an ultra-wideband (UWB) frequency band.
Abstract:
An electronic device may have conductive sidewalls, a conductive turret, and a conductive bridge. The turret may be separated from the sidewalls by a slot. A display may be mounted to the turret and may include conductive display structures and a conductive ring that couples the display to the turret. An antenna in the device may have a radiating element formed from the conductive display structures, the ring, and the turret. The conductive bridge may form a short path across the slot to the sidewalls. The slot may define radiating edges of the radiating element. Integrating the antenna into the device in this way may maximize the bandwidth of the antenna by extending the antenna area to include the entire lateral area of the electronic device. This may also serve to maximize the active area of the display.