Abstract:
A semiconductor device may include a substrate and an insulating layer formed on the subtrate. A fin may be formed on the insulating layer and may include a number of side surfaces and a top surface. A first gate may be formed on the insulating layer proximate to one of the number of side surfaces of the fin. A second gate and may be formed on the insulating layer separate from the first gate and proximate to another one of number of side surfaces of the fin.
Abstract:
A method of fabricating a semiconductor device, having a locally-formed metal oxide high-k gate insulator, involving: nitriding a substrate to form a thin silicon nitride layer; depositing a thin metal film on the thin silicon nitride layer; forming a localized metal oxide layer from the thin metal film, wherein the a thick nitride layer is deposited on the thin metal film, the thick nitride layer is patterned, the at least one exposed thin metal film portion is locally oxidized, by heating, wherein the oxidizing is performed by local laser irradiation; forming a gate stack having the localized metal oxide layer and a gate electrode, wherein the a thick gate material is deposited in the electrode cavity and on the localized metal oxide layer; the thick gate material is polished, thereby forming the gate electrode; and the thick nitride layer along with the at least one covered thin metal film portion are removed, thereby forming the gate stack; and completing fabrication of the device, and a device thereby formed.
Abstract:
A semiconductor wafer including an NMOS device and a PMOS device. The NMOS device is formed to have a high-K gate dielectric and the PMOS device is formed to have a standard-K gate dielectric. A method of forming the NMOS device and the PMOS device is also disclosed.
Abstract:
A method of manufacturing an integrated circuit utilizes solid phase epitaxy to form an elevated source region and an elevated drain region. The method includes providing an amorphous semiconductor material and crystallizing the amorphous semiconductor material without damaging a high-k gate dielectric layer. The gate structure includes L-shaped liners. The semiconductor material can be silicided. A shallow source drain implant can also be provided.
Abstract:
A MOSFET has a drain region, a source region, and a channel region, and the MOSFET initially has a gate comprised of a capping layer on a polysilicon structure disposed on a gate dielectric over the channel region. A drain silicide and a source silicide having a first silicide thickness are formed in the drain region and the source region, respectively. A dielectric layer is deposited over the drain region, the source region, and the gate. The dielectric layer is polished until the capping layer of the gate is exposed such that the capping layer and the first dielectric layer are substantially level. The capping layer on the polysilicon structure of the gate is etched away such that the top of the polysilicon structure is exposed. A top portion of the first dielectric layer is etched away until sidewalls at a top portion of the polysilicon structure are exposed. A polysilicon spacer is formed at the exposed sidewalls at the top portion of the polysilicon structure. A silicidation metal is deposited on the top of the polysilicon structure that is exposed and on the polysilicon spacer. A silicidation anneal is performed with the silicidation metal and the polysilicon structure that is exposed and the polysilicon spacer to form a gate silicide having a second silicide thickness on top of the polysilicon structure of the gate. Because the gate silicide is formed with the added polysilicon spacer at the exposed sidewalls of the polysilicon structure, the gate silicide has a width that is larger than a width of the polysilicon structure of the gate. In addition, the gate silicide is formed in a separate step from the step for forming the drain silicide and the source silicide such that the gate silicide may have a larger thickness and be comprised of different metal silicide material from that of the drain silicide and the source silicide.
Abstract:
A method of fabricating an integrated circuit with locally confined deep pocket regions utilizes a dummy or sacrificial gate spacer. Dopants are provided through the openings associated with sacrificial spacers to form the pocket regions. The dopants are provided after silicidation. The openings can be filled with spacers. The process can be utilized for P-channel or N-channel metal oxide field semiconductor effect transistors (MOSFETS).
Abstract:
A method of manufacturing an integrated circuit with a channel region containing germanium. The method can provide a double planar gate structure. The gate structure can be provided over lateral sidewalls of channel region. The semiconductor material containing germanium can increase the charge mobility associated with the transistor. An epitaxy process can form the channel region. A silicon-on-insulator can be used.
Abstract:
A method of fabricating CMOS transistors having an elevated source-drain structure. The method utilizes the formation of L-shaped spacers on the gate stack followed by amorphous silicon (a-Si) deposition. By way of example, the L-shaped spacers are formed by depositing a first and second spacer layer over the gate stack. The second spacer layer is etched to create a dummy spacer adjacent the gate stack. The regions of the first spacer which are unprotected by the dummy spacer are etched away. The dummy spacer is removed wherein L-shaped spacers of the first spacer layer remain adjacent the gate stack. Deep source-drain implantation is performed on the deposited layer of silicon. After implantation, silicide may be formed on the amorphous silicon at a gate-to-contact spacing determined by the thickness of the L-shaped spacer.
Abstract:
For fabricating a field effect transistor within an active device area of a semiconductor substrate, a layer of gate dielectric material is deposited on the semiconductor substrate. A layer of gate electrode material is deposited on the layer of gate dielectric material, and the gate electrode material is a semiconductor material. At least one of an N-type dopant or a P-type dopant or a neutral dopant is implanted into the layer of gate electrode material such that the at least one of an N-type dopant or a P-type dopant or a neutral dopant has a dopant concentration in the layer of gate electrode material. A layer of photo-resist material, a layer of BARC (bottom anti-reflective coating) material, and the layer of gate electrode material are patterned to form a gate structure of the field effect transistor. The gate structure is comprised of the remaining gate electrode material, and the BARC (bottom anti-reflective coating) material remains on the gate structure. The BARC (bottom anti-reflective coating) material is then stripped from the gate structure using an etching reactant that etches both of the BARC (bottom anti-reflective coating) material and the gate electrode material. An etch rate of the gate electrode material in the etching reactant increases with an increase of the dopant concentration of the at least one of an N-type dopant or a P-type dopant or a neutral dopant within the gate electrode material. Sidewalls of the gate structure are trimmed by a trim length during the step of stripping the BARC (bottom anti-reflective coating) material from the gate structure. Thus, the dopant concentration of the at least one of an N-type dopant or a P-type dopant or a neutral dopant in the gate electrode material is adjusted to control the trim length of the gate structure.
Abstract:
A method of fabricating a silicon-on-insulator (SOI) chip having an active layer with a non-uniform thickness. The method includes the steps of providing a substrate; providing a buried oxide layer (BOX) on the substrate; providing an active layer on the BOX layer, the active layer having an initially uniform thickness; dividing the active layer into at least a first and a second tile; and altering the thickness of the active layer in the area of the second tile. The method also includes forming a plurality of partially depleted semiconductor devices from the active layer in the area of a thicker of the first and the second tiles and forming a plurality of fully depleted semiconductor devices from the active layer in the area of a thinner of the first and the second tiles.