Abstract:
A diffusion barrier multi-layer structure for a TFT LCD by the LTPS process and the process for fabricating thereof are disclosed. By increasing the coarseness between two layers of the diffusion barrier multi-layer structure with a plasma treatment, or by forming a loose and porous impurity collecting layer between two layers of the diffusion barrier multi-layer structure to trap the impurity atoms, the impurity diffusion can be effectively obstructed.
Abstract:
In a phase-change nonvolatile storage device using a phase-change material as storage cells, which is improved to overcome a basic problem involved in conventional devices of this type and reliably, easily operable as a storage device, the pre-record state of a storage cell is read before recording information in the storage cell, and a write pulse optimum for transition is selected and applied. If the storage cell need not change in phase, the write pulse need not be applied. Alternatively, the pulse is adjusted in waveform of the trailing edge, depending on whether the storage cell should be changed to the amorphous state or the crystal state, to control the crystallization hold time.
Abstract:
The invention includes an electronic memory structure. The electronic memory structure includes a substrate. A substantially planar first conductor is formed adjacent to the substrate. An interconnection layer is formed adjacent to the first conductor. A phase change material element is formed adjacent to the interconnection layer. The interconnection layer includes a conductive interconnect structure extending from the first conductor to the phase change material element. The interconnect structure includes a first surface physically connected to the first conductor. The interconnect structure further includes a second surface attached to the phase change material element. The second surface area of the second surface is substantially smaller than a first surface area of the first surface. A substantially planar second conductor is formed adjacent to the phase change material element.
Abstract:
The present invention provides a method and apparatus for providing a polysilicon type-1 ESD transistor in a flash memory chip. The method and apparatus include providing a select gate transistor that includes a gate, a floating gate, a medium doped junction, and a source and drain. The method and apparatus further include forming the source and drain by performing a lightly doped drain (LDD) mask and etch, performing a LDD spacer deposition and LDD spacer etch, and performing a N+ implant mask and a N+ implant.
Abstract:
A semiconductor integrated circuit is formed by MESA isolation of a thin film silicon layer, in which transistor characteristics are free from influence depending on pattern density of transistor forming regions. The thin film silicon layer on an insulating substrate is isolated by MESA isolation, and element forming regions are formed. In the middle part of a large distance between adjacent element forming regions, a LOCOS oxide film is thickly formed, and an oxide film is buried between the LOCOS oxide film and the element forming regions contiguously at the same surface level so that there is no step-like level difference therebetween.
Abstract:
An organic optoelectronic device structure is provided. The structure comprises the following: (a) an organic optoelectronic device selected from an organic light emitting diode, an organic electrochromic display, an organic photovoltaic device and an organic thin film transistor; (b) first and second barrier layers, at least one of the first and second barrier layers permitting transmission of light between the an outer environment and the organic optoelectronic device; (c) a sealing region disposed between the first and second barrier layers, the sealing region cooperating with the first and second barrier layers to enclose the optoelectronic device and restrict transmission of water and oxygen from an outer environment to the optoelectronic device, the sealing region also having at least one associated material that is harmful to the optoelectronic device; and (d) a blocking region disposed between the first and second barrier layers and disposed between the sealing region and the optoelectronic device, the blocking region restricting transmission of the at least one associated material from the sealing region to the optoelectronic device.
Abstract:
An n-channel metal-insulator-semiconductor field-effect transistor (MISFET) that exhibits negative differential resistance in its output characteristic (drain current as a function of drain voltage) is disclosed. For a fixed gate voltage, the MISFET channel current, which flows between the drain and source terminals of the transistor, firstly increases as the drain-to-source voltage increases above zero Volts. Once the drain-to-source voltage reaches a pre-determined level, the current subsequently decreases with increasing drain-to-source voltage. In this region of operation, the device exhibits negative differential resistance, as the drain current decreases with increasing drain voltage. The drain-to-source voltage corresponding to the onset of negative differential resistance is also tunable. In addition, the drain current and negative differential resistance can be electronically tailored by adjusting the gate voltage. The resulting device can be incorporated into a number of useful applications, including as part of a memory device, a logic device, etc.
Abstract:
A highly reliable semiconductor device having an underlying film with a trench and a conducting material film formed in the trench, a method of manufacturing the same and a method of forming a resist pattern used therein are obtained. The underlying film having an upper surface and the trench is formed. The conducting material film is formed on the upper surface and in the trench. A photo resist film is formed on the conducting material film located on the upper surface of the underlying film and in the trench. The photo resist film is left in the trench whereas the photo resist film is developed and removed outside the trench. The conducting material film located on the upper surface of the underlying film is etched and removed with the photo resist film left in the trench used as a mask.
Abstract:
This invention provides a Group III-V compound semiconductor that is free from the limitation of the shape and the size, is economical, is excellent in photo-electric characteristics (photo-electric conductivity photo-electromotive current, photo-electromotive force, quantum efficiency), can freely select the optical gap over a broad range, has high performance as a photo-semiconductor, has limited change with time, and is excellent in response, environmental resistance characteristics and high temperature resistance. The Group III-V compound semiconductor contains a Group III element and a Group V element of the Periodic Table as principal components, and contains also 0.1 atom % to 40 atom % of hydrogen atoms and 100 ppm to 20 atom %, based on the sum of the atomic numbers of the Group III element and the Group V element, of at least one element selected from among Be, Mg, Ca, Zn and Sr.
Abstract:
A semiconductor device having a reduced overlap capacity between a gate electrode and extensions. Specifically, a stacked structure made up of a polysilicon film, tungsten silicide film, and silicon nitride film is partially formed in first and second regions of a silicon substrate, respectively. Sidewall oxide films are formed on side surfaces of the polysilicon films in the first and second regions, respectively. A width of the sidewall of the first structure is smaller than a width of the sidewall of the second structure such that an overlap amount between a second conductive layer and a second impurity region is smaller than an overlap amount between a first conductive layer and a first impurity region.