Abstract:
Methods for LTE-WLAN interworking control and management are proposed. In one novel aspect, a mobile termination (MT) can use an AT command to report radio access network (RAN) assistance parameters of the current serving cell. A terminal equipment (TE) can use the AT command to query the specific RAN assistance parameters and the threshold value provided by the network for making LTE-WLAN interworking decisions. If reporting is enabled by TE, then an unsolicited result code (URC) is sent from MT to TE whenever changes in the current RAN assistance parameters occur.
Abstract:
Methods for LTE-WLAN interworking control and management are proposed. In one novel aspect, a mobile termination (MT) can use an AT command to report the change of a RAN rule and/or a RAN condition match. A terminal equipment (TE) can use the AT command to query a list of matches and current RAN measurement values. A RAN rule match means one or more than one of RAN rules satisfy the threshold provided by the network according to TS36.304 description, or change from satisfied to unsatisfied. A RAN condition match means all RAN rules within a RAN condition are all satisfied according to TS36.604 description, or if any of the RAN condition change from satisfied to unsatisfied. If the reporting is enabled by TE, an unsolicited result code (URC) is sent from MT to TE whenever changes in the current RAN rule or RAN condition match occur.
Abstract:
A method of control Maximum Transmission Unit (MTU) reporting and discovery using AT commands is proposed. In communications networks, the MTU of a communication protocol of a layer is the size (in bytes or octets) of the largest protocol data unit that the layer can pass onwards. In an IP network, IP packets may be fragmented if the supported MTU size is smaller than the packet length. In accordance with one novel aspect, the packet data protocol (PDP) context of a packet data network (PDN) connection comprises MTU information. By introducing MTU information to the PDP contexts, TE can use AT commands to query MTU parameters from the network and thereby avoid fragmentation. TE can also use AT command to set MTU parameters and thereby control MTU discovery.
Abstract:
Methods and apparatus are provided for enhanced bearer continuity for the 3GPP network. In one novel aspect, the UE detects missing parameters for the inter-RAT bearer change in an idle state. The UE performs bearer preservation procedures to maintain the bearer continuity. In one embodiment, predefined/preconfigured parameter settings are used. In one embodiment, a mapping rule is used to map the missing parameter to a predefined value based on one or more known parameters. In another embodiment, the missing parameters are obtained from the network. In another embodiment, signaling procedures used to obtain the missing parameters. The signaling procedures include a service request, a UE-initiated bearer modification procedure. In one embodiment, the cell reselection is suspended such that the signaling procedure is performed to obtain the missing parameters before the cell reselection. In another embodiment, a RAU procedure is used upon detecting the missing of parameters.
Abstract:
A method of supporting group communication over LTE MBMS is provided. A UE first establishes a unicast Evolved Packet Service (EPS) bearer in an LTE network for group communication. The UE belongs to a communication group having a communication group ID. The UE receives access information from the network for monitoring downlink (DL) multicast traffic of the DL group communication based on a multicast decision. The UE is then ready for monitoring a multicast Multimedia Broadcast Multicast Service (MBMS) bearer for receiving the DL multicast traffic. In one embodiment, The UE requests to switch the DL multicast traffic from the multicast MBMS bearer to the unicast EPS bearer upon detecting that the UE is approaching an MBMS coverage boundary. In another embodiment, the UE transmits an indication of preferred target cells to the network before performing a handover and thereby maintaining multicast service continuity of the group communication.
Abstract:
A User Equipment (UE) including a wireless transceiver and a controller is provided. The wireless transceiver performs wireless transmission and reception to and from a first service network utilizing a first RAT or a second service network utilizing a second RAT. The controller sends an indicator of a connection release request to the first service network via the wireless transceiver in response to terminating a first communication service with the first service network or in response to leaving the first service network for the second service network. Also, the controller releases a Radio Resource Control (RRC) connection with the first service network after sending the indicator of the connection release request.
Abstract:
A method for S-NSSAI handling of a 5GS capable UE supporting session continuity between 3GPP and non-3GPP interworking is proposed. The UE maintains a PDN connection/PDU session. The UE performs interworking among S1 mode, N1 mode (including 3GPP and non-3GPP access), and ePDG. The UE associates the existing S-NSSAI with the new PDN connection/PDU session after interworking, no matter whether the S-NSSAI is provided by the network or not. The UE can update the S-NSSAI upon receipt of new value from the network. When interwork to N1 mode, the UE applies the S-NSSAI.
Abstract:
Aspects of the disclosure provide methods and apparatuses. The method can include receiving, at a user equipment (UE), system information broadcast from a base station which may be shared by one or more PLMNs and SNPNs, the system information including an indication of whether accessing an SNPN using home service provider (HSP) subscription of a HSP network is supported. The UE can be configured with subscription information of the HSP network. The subscription information can include the HSP subscription and a home SP selection list that includes one or more candidate networks each represented by an SNPN identifier. The method can further include responsive to the system information, selecting a network from the home SP selection list according to a priority order of the candidate networks, and accessing the network selected from the home SP selection list using the HSP subscription.
Abstract:
A method for UE route selection policy (URSP) rule matching is proposed. URSP is used by a UE to determine if a detected application can be associated to an established PDU session, can be offload to non-3GPP access outside a PDU session, or can trigger the establishment of a new PDU session. The UE first finds a non-default URSP rule with a matching traffic descriptor to the application. When the UE fails to find existing PDU session or setup new PDU session with any or the route selection descriptors of the non-default URSP rule, the UE moves to another non-default URSP rule, if any, and try the matching. If all non-default URSP rules cannot be matched with the application, then the UE tries the default URSP rule, which includes a match-all traffic descriptor.
Abstract:
A method of handling invalid PDU session during handover procedure between non-3GPP access and 3GPP access in a mobile communication network is proposed. A UE establishes a PDU session over a first RAT, and then tries to handover the PDU session from the first RAT to a second RAT. However, at the network side, the PDU session over the first RAT does not exist anymore and the network considers the PDU session to be invalid. The network thus sends a PDU session establishment reject message back to the UE, with a 5GSM status message cause value #54 indicating “PDU session does not exist”. At the UE side, the PDU session over the first RAT is still valid (e.g., not inactive). In order to resynchronize with the network, the UE performs a PDU session release procedure to release the PDU session over the first RAT.