Abstract:
A hybrid nanostructure for molecular analysis is disclosed. The structure includes a plurality of nanofingers wherein each nanofinger is coated with a metal coating, is attached at one end to a substrate, and is freely bendable along its length such that the second ends of each nanofinger are capable of movement toward each other to form a cavity. The structure further includes a nanoparticle trapped in the cavity. An array of hybrid nanostructures and a method for fabricating the hybrid nanostructures are also disclosed.
Abstract:
An electrically driven device for surface enhanced Raman spectroscopy includes a first electrode, a substrate positioned proximate to the first electrode, a plurality of cone shaped protrusions formed integrally with or on a substrate surface, a Raman signal-enhancing material coated on each protrusion, and a second electrode positioned relative to the first electrode at a predetermined distance. Each of the protrusions has a tip with a radius of curvature ranging from about 0.1 nm to about 100 nm. The second electrode is positioned relative to the first electrode such that the electrodes together produce an electric field when a voltage bias is applied therebetween. The electric field has a field distribution that creates a stronger field gradient at a region proximate to the tips than at other portions of the substrate.
Abstract:
An asymmetrical-nanofinger device for surface-enhanced luminescence. The device includes a substrate, and a plurality of nanofingers coupled with the substrate. The plurality of nanofingers includes a primary nanofinger having a primary active-material cap, and a secondary nanofinger having a secondary active-material cap. An average diameter of the primary active-material cap is substantially greater than an average diameter of the secondary active-material cap. The primary nanofinger and secondary nanofinger of the plurality of nanofingers are to self-arrange into a close-packed configuration with an analyte molecule disposed between the primary active-material cap and the secondary active-material cap. A method for fabricating the asymmetrical-nanofinger device, and an optical apparatus including an optical component that includes the asymmetrical-nanofinger device are also provided.
Abstract:
A semiconductor assembly is described in which a support element is constructed on a surface of a semiconductor lamina. Following formation of the thin lamina, which may have a thickness about 50 microns or less, the support element is formed, for example by plating, or by application of a precursor and curing in situ, resulting in a support element which may be, for example, metal, ceramic, polymer, etc. This is in contrast to pre-formed support element which is affixed to the lamina following its formation, or to a donor wafer from which the lamina is subsequently cleaved.Fabricating the support element in situ may avoid the use of adhesives to attach the lamina to a permanent support element. In some embodiments, this process flow allows the lamina to be annealed at high temperature, then to have an amorphous silicon layer formed on each face of the lamina following that anneal.
Abstract:
An apparatus for performing spectroscopy includes an optical waveguide comprising a fluidic channel to receive a fluid sample, in which the optical waveguide is to propagate lightwaves at a set of frequencies. The apparatus also includes a wavelength selective device coupled to the optical waveguide, in which the wavelength selective device comprises a predetermined bandwidth and is to capture frequencies of light within the predetermined bandwidth. The apparatus further includes a detector coupled to the wavelength selective device to generate signals that identify the frequencies captured by the wavelength selective device.
Abstract:
A scattering spectroscopy apparatus, system and method employ guided mode resonance (GMR) and a GMR grating. The apparatus includes a GMR grating having a subwavelength grating, and an optical detector configured to receive a portion of a scattered signal produced by an interaction between an excitation signal and an analyte associated with a surface of the GMR grating. A propagation direction of the received portion of the scattered signal is substantially different from a propagation direction of a GMR-coupled portion of the excitation signal within the GMR grating. The system includes the apparatus and an optical source. The method includes exciting a GMR in a GMR grating, interacting a GMR-coupled portion of the excitation signal with an analyte to produce a scattered signal and detecting a portion of the scattered signal.
Abstract:
A surface enhanced Raman spectroscopy system includes a surface enhanced Raman spectroscopy substrate and a laser source configured to emit light within a spectrum of wavelengths toward a predetermined species on or near the surface enhanced Raman spectroscopy substrate. The system further includes a set of filters positioned to be in optical communication with light scattered after the laser light interacts with the predetermined species. Each of the filters in the set is respectively configured to pass scattered light within a different predetermined narrow band of wavelengths. The system also includes a plurality of photodetectors, where each photodetector is positioned adjacent to a respective one of the filters in the set and is configured to output a signal if the scattered light passes through the respective one of the filters. The set of filters is targeted for detection of characteristic peaks of the predetermined species.
Abstract:
A self-arranging, luminescence-enhancement device 101 for surface-enhanced luminescence. The self-arranging, luminescence-enhancement device 101 for surface-enhanced luminescence includes a substrate 110, and a plurality 120 of flexible columnar structures. A flexible columnar structure 120-1 of the plurality 120 includes a flexible column 120-1A, and a metallic cap 120-1B coupled to the apex 120-1 C of the flexible column 120-1A. At least the flexible columnar structure 120-1 and a second flexible columnar structure 120-2 are configured to self-arrange into a close-packed configuration with at least one molecule 220-1 disposed between at least the metallic cap 120-1B and a second metallic cap 120-2B of respective flexible columnar structure 120-1 and second flexible columnar structure 120-2.
Abstract:
A light amplifying structure 100 for Raman spectroscopy includes a a resonant cavity 108. A distance between a first portion 102B and a second portion 102A of the structure 100 forming the resonant cavity 108 is used to amplify excitation light emitted from a light source 420 into the resonant cavity 108 at a first resonant frequency of the resonant cavity 108. Also, the resonant cavity 108 amplifies radiated light radiated from a predetermined molecule excited by the excitation light in the resonant cavity at a second resonant frequency of the resonant cavity 108.
Abstract:
The present invention generally relates to an edge deletion module positioned within an automated solar cell fabrication line. The edge deletion module may include a grinding wheel device for removing material from edge regions of a solar cell device and cleaning the edge regions of the solar cell device after removing the material. The edge deletion module may also include an abrasive element, a portion of which is ground as it is periodically, laterally advanced toward the grinding wheel device. A controller is provided for controlling the operation and function of various facets of the module.