Abstract:
A liquid crystal display including a gate driver driving gate lines on a liquid crystal display panel, a timing controller controlling the gate driver, and a masking part selectively intercepting a gate output enable signal corresponding to an abnormal state of a gate high voltage, wherein the gate output enable signal is supplied to the gate driver from the timing controller.
Abstract:
An organic electroluminescent device includes first and second substrates having pixel regions and a peripheral region, a first common electrode at the peripheral region on the first substrate, a driving thin film transistor (TFT) at each of the pixel regions on the first substrate, a first connection electrode connected to a drain electrode of the TFT, a second connection electrode connected to the first common electrode, a first electrode on the second substrate, isolating patterns on the first electrode corresponding to each border between the pixel regions, a first insulating pattern on the first electrode corresponding to the second connection electrode, partition walls on the isolating patterns, an organic luminescent layer on the first electrode, a second electrode on the organic luminescent layer connected to the first connection electrode at each of the pixel regions, and a first contacting electrode on the first insulating pattern contacting the first electrode.
Abstract:
An organic electro-luminescent device and a method for fabricating the same are disclosed in the present invention. The electro-luminescent device includes first and second electrodes over a substrate, and an organic emission layer between first and second electrodes, wherein the organic emission layer has a blended structure of a block copolymer and an organic emission material. The fabricating method includes forming a first electrode on a substrate, forming an organic emission layer over the first electrode, wherein the organic emission layer has a blended structure of a block copolymer and an organic emission material, and forming a second electrode over the organic emission layer.
Abstract:
An organic electroluminescent display (ELD) device includes first and second substrates having a plurality of sub-pixels defined thereon, the first and second substrates being spaced apart from and opposing each other, an array element layer on the first substrate, the array element layer having a plurality of thin film transistors corresponding to each sub-pixel, a first electrode on an inner side of the second substrate, an organic light-emitting layer beneath the first electrode, a second electrode corresponding to each sub-pixel beneath the organic light-emitting layer, a plurality of electrical connecting patterns corresponding to each sub-pixel between the array element layer and the second electrode, the electrical connecting pattern being formed of material having a plastic deformation property, and a seal pattern formed on one of the first and second substrates, wherein a height of the electrical connecting pattern is smaller than an original height of the electrical connecting pattern measured before an attachment of the first and second substrates.
Abstract:
An LCD array substrate includes a plurality of gate lines arranged in a first direction; a plurality of data lines arranged in a second direction to cross the plurality of gate lines; a semiconductor layer formed at overlapping regions of the gate lines and the data lines and extending a predetermined length from the overlapping regions over the gate lines; a drain electrode spaced apart from the overlapping regions of the gate and data lines and disposed partially in contact with the semiconductor layer, the drain electrode having ends extended beyond the semiconductor layer and the gate line; and a pair of pixel electrodes disposed on opposing sides of the gate line and electrically connected with the drain electrode.
Abstract:
A method for discharging an in-plane switching mode liquid crystal display panel includes providing a color filter substrate and a thin film transistor substrate, forming a liquid crystal layer between the color filter substrate and thin film transistor substrate to form a liquid crystal display panel, and discharging at least one surface of the liquid crystal display panel by an ionizer.
Abstract:
A backlight device for a liquid crystal display includes a substrate, and a plurality of white, red, green, and blue light emitting diodes arranged on the substrate.
Abstract:
A method of forming a polysilicon thin film transistor that includes depositing an amorphous silicon layer over a substrate, crystallizing the amorphous silicon layer into a polycrystalline silicon layer, patterning the polycrystalline silicon layer to form a polysilicon active layer for a thin film transistor, depositing silicon oxide over the polysilicon active layer to form a gate insulation layer under a vacuum condition, applying heat to anneal the gate insulation layer under a vacuum condition and forming a gate electrode on the annealed gate insulation layer.
Abstract:
A method for forming a line of an LCD device includes sequentially depositing first and second metal layers on a glass substrate, forming a mask pattern on the second metal layer, performing a first wet-etch process using a mixed acid solution as an etchant on the first and second metal layers with the mask pattern, and performing a second wet-etch process using the mask pattern.
Abstract:
A liquid crystal display device and a method of fabricating the same are disclosed in the present invention. The liquid crystal display device includes a gate line and a data line crossing each other on a substrate, a pixel electrode at an area defined by the gate line and the data line, a gate electrode connected to the gate line, a source electrode connected to the data line, a drain electrode connected to the pixel electrode, and a semiconductor layer acting as a channel between the source and drain electrode, wherein the data line and the semiconductor layer has a trench formed at a side facing to the drain electrode.