Abstract:
A method of manufacturing an integrated circuit utilizes solid phase epitaxy to form an elevated source region and an elevated drain region. The method includes providing an amorphous semiconductor material and crystallizing the amorphous semiconductor material without damaging a high-k gate dielectric layer. The gate structure includes L-shaped liners. The semiconductor material can be silicided. A shallow source drain implant can also be provided.
Abstract:
A MOSFET has a drain region, a source region, and a channel region, and the MOSFET initially has a gate comprised of a capping layer on a polysilicon structure disposed on a gate dielectric over the channel region. A drain silicide and a source silicide having a first silicide thickness are formed in the drain region and the source region, respectively. A dielectric layer is deposited over the drain region, the source region, and the gate. The dielectric layer is polished until the capping layer of the gate is exposed such that the capping layer and the first dielectric layer are substantially level. The capping layer on the polysilicon structure of the gate is etched away such that the top of the polysilicon structure is exposed. A top portion of the first dielectric layer is etched away until sidewalls at a top portion of the polysilicon structure are exposed. A polysilicon spacer is formed at the exposed sidewalls at the top portion of the polysilicon structure. A silicidation metal is deposited on the top of the polysilicon structure that is exposed and on the polysilicon spacer. A silicidation anneal is performed with the silicidation metal and the polysilicon structure that is exposed and the polysilicon spacer to form a gate silicide having a second silicide thickness on top of the polysilicon structure of the gate. Because the gate silicide is formed with the added polysilicon spacer at the exposed sidewalls of the polysilicon structure, the gate silicide has a width that is larger than a width of the polysilicon structure of the gate. In addition, the gate silicide is formed in a separate step from the step for forming the drain silicide and the source silicide such that the gate silicide may have a larger thickness and be comprised of different metal silicide material from that of the drain silicide and the source silicide.
Abstract:
A method of fabricating an integrated circuit with locally confined deep pocket regions utilizes a dummy or sacrificial gate spacer. Dopants are provided through the openings associated with sacrificial spacers to form the pocket regions. The dopants are provided after silicidation. The openings can be filled with spacers. The process can be utilized for P-channel or N-channel metal oxide field semiconductor effect transistors (MOSFETS).
Abstract:
A method of manufacturing an integrated circuit with a channel region containing germanium. The method can provide a double planar gate structure. The gate structure can be provided over lateral sidewalls of channel region. The semiconductor material containing germanium can increase the charge mobility associated with the transistor. An epitaxy process can form the channel region. A silicon-on-insulator can be used.
Abstract:
A method of fabricating CMOS transistors having an elevated source-drain structure. The method utilizes the formation of L-shaped spacers on the gate stack followed by amorphous silicon (a-Si) deposition. By way of example, the L-shaped spacers are formed by depositing a first and second spacer layer over the gate stack. The second spacer layer is etched to create a dummy spacer adjacent the gate stack. The regions of the first spacer which are unprotected by the dummy spacer are etched away. The dummy spacer is removed wherein L-shaped spacers of the first spacer layer remain adjacent the gate stack. Deep source-drain implantation is performed on the deposited layer of silicon. After implantation, silicide may be formed on the amorphous silicon at a gate-to-contact spacing determined by the thickness of the L-shaped spacer.
Abstract:
For fabricating a field effect transistor within an active device area of a semiconductor substrate, a layer of gate dielectric material is deposited on the semiconductor substrate. A layer of gate electrode material is deposited on the layer of gate dielectric material, and the gate electrode material is a semiconductor material. At least one of an N-type dopant or a P-type dopant or a neutral dopant is implanted into the layer of gate electrode material such that the at least one of an N-type dopant or a P-type dopant or a neutral dopant has a dopant concentration in the layer of gate electrode material. A layer of photo-resist material, a layer of BARC (bottom anti-reflective coating) material, and the layer of gate electrode material are patterned to form a gate structure of the field effect transistor. The gate structure is comprised of the remaining gate electrode material, and the BARC (bottom anti-reflective coating) material remains on the gate structure. The BARC (bottom anti-reflective coating) material is then stripped from the gate structure using an etching reactant that etches both of the BARC (bottom anti-reflective coating) material and the gate electrode material. An etch rate of the gate electrode material in the etching reactant increases with an increase of the dopant concentration of the at least one of an N-type dopant or a P-type dopant or a neutral dopant within the gate electrode material. Sidewalls of the gate structure are trimmed by a trim length during the step of stripping the BARC (bottom anti-reflective coating) material from the gate structure. Thus, the dopant concentration of the at least one of an N-type dopant or a P-type dopant or a neutral dopant in the gate electrode material is adjusted to control the trim length of the gate structure.
Abstract:
For fabricating a test field effect transistor on a semiconductor substrate, a layer of gate dielectric material is deposited on the semiconductor substrate, and a layer of gate electrode material is deposited on the layer of gate dielectric material. A dummy structure is formed on the gate electrode material, and the dummy structure is disposed over a shaped area of the gate electrode material and of the semiconductor substrate. The dummy structure has at least one sidewall around a perimeter of the shaped area. A spacer structure is formed to surround the at least one sidewall of the dummy structure outside of the perimeter of the shaped area. The dummy structure is etched away such that the shaped area of the gate electrode material is exposed and such that the spacer structure remains outside of the perimeter of the shaped area. Any exposed regions of the gate electrode material and of the gate dielectric material not under the spacer structure are etched away. The gate dielectric material remaining under the spacer structure forms a gate dielectric of the test field effect transistor, and the gate electrode material remaining under the spacer structure forms a gate electrode of the test field effect transistor. A drain and source dopant is implanted into exposed regions of the semiconductor substrate to form a first drain or source junction within the shaped area surrounded by the gate dielectric and the gate electrode, and to form a second drain or source junction outside the shaped area beyond the gate dielectric and the gate electrode. A width of the test field effect transistor is the perimeter of the shaped area, and a length of the test field effect transistor is the width of the gate dielectric and the gate electrode extending out from the perimeter of the shaped area.
Abstract:
An integrated circuit includes multiple active layers. Preferably, a semiconductor-on-insulator (SOI) or silicon-on-insulator wafer is utilized to house a first active layer. A second active layer is provided above an insulative layer above the SOI substrate. Solid phase epitaxy can be used to form the second active layer. Subsequent active layers can be added by a similar technique. A seeding window can also be utilized.
Abstract:
For fabricating a field effect transistor on a semiconductor substrate in SOI (semiconductor on insulator) technology, an insulating block comprised of insulating material is formed on a thin semiconductor island comprised of semiconductor material. Semiconductor material is further grown from sidewalls of the semiconductor island to extend up along sidewalls of the insulating block to form a raised drain structure on a first side of the insulating block and the semiconductor island and to form a raised source structure on a second side of the insulating block and the semiconductor island. A drain and source dopant is implanted into the raised drain and source structures. A thermal anneal is performed to activate the drain and source dopant within the raised drain and source structures and such that the drain and source dopant extends partially into the semiconductor island. The insulating block is etched away to form a block opening, and a gate dielectric is deposited at a bottom wall of the block opening. The block opening is filled with a conductive material to form a gate structure disposed over the semiconductor island. The portion of the semiconductor island disposed under the gate structure forms a channel region that is fully depleted during operation of the field effect transistor. A drain silicide is formed within the raised drain structure, and a source silicide is formed within the raised source structure. In this manner, the drain and source silicides formed in the raised drain and source structures may be formed to have a higher thickness than the relatively thin semiconductor island to minimize series resistance at the drain and source of the field effect transistor.
Abstract:
An ultra-large-scale integrated (ULSI) circuit includes MOSFETs on an SOI substrate. The MOSFETs include elevated source and drain regions. The elevated source and drain regions are amorphized before doping. Neutral ion species can be utilized to amorphize the elevated source and drain region. Dopants are activated in a low-temperature rapid thermal anneal process.