Abstract:
A system and method for conservation of battery power in a portable medical device is provided. In one example, a processor arrangement that includes a plurality of processors is implemented. At least one of these processors is configured to execute the critical functions of the medical device, while one or more other processors assume a reduced service level, thereby drawing significantly less power. According to this arrangement, the medical device conserves energy by drawing the additional electrical power needed to activate the additional processing power only when needed.
Abstract:
A wearable defibrillator and method of monitoring the condition of a patient. The wearable defibrillator includes at least one therapy pad, at least one sensor and at least one processing unit operatively connected to the one or more therapy pads and the one or more sensors. The wearable defibrillator also includes at least one audio device operatively connected to the one or more processing units. The one or more audio devices are configured to receive audio input from a patient.
Abstract:
A wearable defibrillator and method of monitoring the condition of a patient. The wearable defibrillator includes at least one therapy pad, at least one sensor and at least one processing unit operatively connected to the one or more therapy pads and the one or more sensors. The wearable defibrillator also includes at least one audio device operatively connected to the one or more processing units. The one or more audio devices are configured to receive audio input from a patient.
Abstract:
An ambulatory medical device comprising: a monitoring component comprising at least one sensing electrode for detecting a cardiac condition of a patient; at least one processor configured for: adjusting one or more detection parameters for detecting the cardiac condition of the patient based at least in part on at least one of 1) one or more environmental conditions and 2) input received from the monitoring component; and providing at least one of an alarm and a treatment in response to detecting the cardiac condition of the patient based on the adjusted one or more detection parameters.
Abstract:
An external medical device is provided. The external medical device includes a memory and circuitry, in communication with the memory, to receive input specifying at least in part at least one prompt relating to a health survey for a patient, the at least one prompt being customized based on the patient; convert the at least one prompt to an audio representation; and perform the health survey by at least delivering to the patient the audio representation.
Abstract:
A wearable arrhythmia monitoring and treatment device for improving confidence in determined arrhythmias prior to treatment includes a plurality of sensing electrodes, one or more therapy electrodes, and an electrode signal acquisition circuit having a plurality of inputs. The electrode signal acquisition circuit is configured to sense a respective signal provided by each of a plurality of different pairings of the plurality of sensing electrodes. The wearable arrhythmia monitoring and treatment device includes a monitoring and detection circuit including at least one processor configured to analyze the respective signals provided by each of the plurality of different pairings of the plurality of sensing electrodes, change a confidence level in a determined arrhythmia condition based on the respective signals provided by the plurality of different pairings of the plurality of sensing electrodes, and initiate a therapy to the patient via the one or more therapy electrodes based on the confidence level.
Abstract:
Ambulatory medical devices may occasionally improperly administer a therapeutic stimulation pulse to a patient upon an incorrect detection of arrhythmia in the patient. To address these improperly administered therapeutic stimulation pulses, an ambulatory medical device includes processes and systems for verifying an initial declaration of an arrhythmia. The ambulatory medical device described include at least one first sensing electrode and at least one second sensing electrode distinct from the at least one first sensing electrode. First electrocardiogram (ECG) signals detected by the first sensing electrode are analyzed to provide an initial declaration of the arrhythmia condition of the patient. As a treatment protocol is being initiated in response to the analysis of the first ECG signals, second ECG signals detected by the second sensing electrode are analyzed to verify the initial declaration of the arrhythmia.
Abstract:
A remote alarm for use with a wearable medical device. The remote alarm is configured to receive alarms, voice messages and prompts issued by the wearable medical device and to repeat those alarms, voice messages and prompts in a manner that can more easily be perceived by a patient wearing the wearable medical device or a bystander. The remote alarm can be configured to receive a communication from the wearable medical device, and in response, to identify one or more messages to be provided to the patient or a bystander. The messages may be provided audibly, visually, tactilely or combinations thereof. The remote alarm may further be configured to take certain actions depending upon the content of the communication, such as sending a telephone message to alert emergency personnel to the identity, location and medical condition of the patient, or sending an email.
Abstract:
A system including a medical device is provided. The medical device includes at least one sensor configured to acquire first data descriptive of a patient, first memory storing a plurality of templates, and at least one processor coupled to the at least one sensor and the first memory. The at least one processor is configured to identify a first template of the plurality of templates that is similar to the first data, to determine first difference data based on the first template and the first data, and to store the first difference data in association with the first template. The system may further include the programmable device.
Abstract:
A wearable therapeutic device to facilitate care of a subject is provided. The wearable therapeutic device can include a garment having a sensing electrode. The garment includes at least one of an inductive element and a capacitive element, and a controller identifies an inductance of the inductive element or a capacitance of the capacitive element, and determines a confidence level of information received from the sensing electrode based on the inductance or the capacitance. The wearable therapeutic device also includes an alarm module coupled with the controller and configured to provide a notification to a subject based on the confidence level.