Abstract:
An automated garage door closing device for a remote controlled overhead garage door wherein the device is mounted on one of a pair of parallel tracks receiving rollers suitably mounted on the outer edges of the door panels, the device including a switch housing containing a switch for the leading edge of the door, and a circuit located in a second housing adjacent the garage floor and including an interval timer acting to close the door after a predetermined period of time, an audible alarm which is activated upon the garage door reaching the fully open position, a switch deactivating the entire unit when the garage door is deliberately to be left in the fully open position, and a flexible switch arm extending through the switch housing to a position to engage the upper edge of the garage door panel and acts to activate the automated closing device. A recycle delay circuit in the timing circuit acts to deactivate the unit upon interruption of the door closing operation if door movement is reversed and returned to the open position, and a sensor providing a sensor beam adjacent the garage floor to measure the time interval of interruption of the sensor beam to determine if a vehicle has exited or entered the garage or a person or animal has interrupted the beam. Also, a carbon monoxide detector is inserted in the circuit to provide activation of the door opening cycle if the level of carbon monoxide reaches a dangerous level.
Abstract:
An elevator system includes an elevator cab having doors that are movable between open and closed positions. A rail is mounted to the cab. At least one roller defines an axis of rotation and is mounted for movement along the rail. The roller is operably connected to the doors to move the doors between open and closed positions. A motor assembly is mounted for movement with the roller along the rail and has an output for providing a rotational driving force to the roller. In one embodiment, the motor drives a planetary drive assembly which drives the roller along the rail and in another embodiment the motor drives a worm gear assembly which drives the roller. Alternatively, a tree-axis torque motor generates a magnetic field that is non-perpendicular to the axis of rotation of the roller, which causes the roller to be driven along the rail.
Abstract:
The present application discloses an axial operator that is configured for use with a door assembly. The axial operator comprises a rotatable operator output member that rotates about an operator axis, the operator output member being constructed and arranged to be operatively connected within the door assembly such that the operator output axis extends generally vertically. An electric motor has a rotatable motor output member that rotates about the operator axis. The motor is constructed and arranged to selectively rotate the motor output member about the operator axis. A reduction transmission is connected between the motor output member and the operator output member. The reduction transmission is constructed and arranged such that the transmission rotates the operator output member at a lower rotational speed than a rotational speed at which the motor rotates the motor output member and applies a higher torque to the operator output member than a torque which the motor applies to the motor output member. The reduction transmission comprises (a) an orbit gear, (b) a planet gear carrier, and (c) a planet gear. The motor is adapted to be communicated to a controller so as to receive a door moving signal therefrom and being further adapted to selectively rotate the motor output member in response to receiving the door moving signal to thereby rotate the operator output member so as to move the door panel with respect to the doorway as aforesaid.
Abstract:
A window actuation assembly for a vehicle which is structured to automatically lower at least one, but preferably all of the windows of a vehicle in the event that a vehicle becomes partially or totally submerged in a body of water and regardless if the orientation of the vehicle, is up-right, inverted, on its side, etc. One or more fluid sensors are located strategically throughout the various portions of the vehicle and are specifically structured activate a drive assembly for the lowering of the windows upon sensing a predetermined amount of water within an associated proximity of the vehicle, to the extent that the one or more sensors are themselves at least partially submerged. The sensors are further structured not to be activated in the unlikely event that liquid inadvertently is spilled upon or otherwise applied thereto. The one or more sensors may be associated with a single drive assembly and/or independent drive assemblies associated with each of the windows such that only one, or more preferably all of the windows may be lowered in an emergency, submerged condition of the vehicle. The windows may be restricted from being raised into the normally closed position once they have been lowered under emergency circumstances, in order to prevent inadvertent closing of the windows by an occupant of the vehicle suffering from injury or being otherwise disoriented because of the emergency.
Abstract:
A power window apparatus is provided that, even if a CPU (IC2) causes malfunction or becomes uncontrollable upon submergence, can prevent windows from performing unexpected operations and enables the windows to be opened without fail if desired. The power window apparatus comprises: a driving part that has two current input-output ends, and opens or closes automobile open/close parts, depending on the direction of a flowing current; two relays which respectively have exciting coils and switching contacts, wherein, when a current is fed to the exciting coils, the switching contacts connect the current input-output end to a positive or negative pole of power; a submergence detecting sensor that drops in resistance value between both ends thereof when exposed to water; and a submergence-time escape switch that forcibly drives the open/close parts open upon submergence, wherein transistors are provided which are connected in series with the exciting coils and feed a current to the exciting coils, and the bases of the transistors are grounded via the submergence detecting sensor.
Abstract:
An automatic door assembly including a sliding door and an electric motor drivingly coupled to the sliding door. The electric motor includes a clutch movable between a locked position preventing rotation of the electric motor and an unlocked position permitting rotation of the electric motor.
Abstract:
Door operator for opening, closing and locking at least one door panel on a transit vehicle. The door operator has at least one base portion for mounting on the vehicle and at least one fixed support member attached to the base portion. The door operator has door hangers for attachment of the door panel to the fixed support member and moveable door support members attached to the door hangers. The moveable door support members engage the fixed support member to support the door panel while permitting opening and closing motions of the panel. The operator includes at least one door drive having a base mounted portion and a hanger mounted portion engaging the base mounted portion to be moved thereby to move the panel in opening and closing directions. The operator has a lock for securing the door panel in a closed position, the lock having a lock shaft which includes at least one primary lock device for preventing motion of the base mounted door drive portion and at least one secondary lock device engaging one of the door hangers. The lock includes a lock shaft engaging mechanism which rotates the lock shaft to a locking position when the door panel is closed. The lock also has an unlocking actuator for unlocking the door panel, the unlocking actuator having a moveable portion connected to the lock shaft to rotate the lock shaft to the unlocking position.
Abstract:
A window lift mechanism for raising and lowering a window in a vehicle door includes a support bracket mounted to the window and a motor supported on the support bracket. A vertical rack is mounted to the door and is positioned immediately adjacent the window, and a vertical guide track is also mounted to the door parallel to the rack and immediately adjacent the window. A pinion gear driven by the motor is supported on the support bracket and engaged with the rack to permit vertical movement of the window. A slide is supported on the support bracket and engaged with the guide track to provide support as the window is raised or lowered. Alternatively, a second rack and pinion are used instead of the guide track and slide. A manual drive mechanism for raising and lowering the window is also disclosed including a drive cable which transfers rotary torque from a drive pulley to a driven pulley supported on the support bracket. The drive cable includes nubs in engagement with recessed dimples in the drive and driven pulleys.
Abstract:
A vehicle door and a method for its fabrication. The vehicle door includes a lower door structure that is configured to be pivotally coupled to a vehicle body and which includes a hollow cavity. The vehicle door also includes an upper door structure having a frame that defines a window aperture. A window member and a window regulator mechanism are coupled to the upper door structure such that the window member is movably mounted within the window aperture. The window regulator mechanism is of type that is easily packaged into the vehicle door. Suitable alternatives include mechanisms that include powered lead screws, rack-and-pinion drives and/or cable-and-drum type mechanisms. The assembled upper door structure or cassette is thereafter coupled to the lower door structure to form the vehicle door.
Abstract:
A vehicle pivoting closure assembly has a concealed power actuator remotely operated by a controller to open and close a closure or liftgate. A hinge member of the power actuator is engaged pivotally to a vehicle structure about a hinge axis, and rigidly to the closure. An armature extends pivotally from an elongated linear moving rack about a rack pivot axis and to the hinge member. The armature also pivotally engages the hinge member about a secondary pivot axis disposed parallel to the hinge axis and rack pivot axis. The rack is driven by a pinion gear train powered by a motor through a clutch. The hinge, the rack, the gear train and the motor are all supported by a reinforcement tray forming a modular engaged to the vehicle structure. The tray isolates the extreme dynamic loads placed upon the hinge by the motor, thereby eliminating the need to further reinforce the vehicle structure.