Abstract:
Based on results of a knock control for adjusting ignition timing in accordance with the occurrence of knocking, an electronic control unit computes deposit required ignition timing akgrg, which is ignition timing determined by taking adhesion of deposits in an internal combustion engine into consideration. Based on the deposit required ignition timing akgrg, the electronic control unit reduces a vvt allowable variable range of a target VVT advancement amount, which is a control target value of a variable valve timing mechanism. The electronic control unit corrects a required ignition timing based on the actual VVT advancement amount vt, which is chanted according to the reduction of the allowable variable range of the target VVT advancement amount. As a result, problems resulting from the adhesion of deposits are effectively avoided.
Abstract:
An upper limit guard is set for a valve overlap amount according to a KCS learning value used to retard-correct an ignition timing in order to suppress knock, and an engine load. As a result, it is possible to make the upper limit guard value a value able to restrict the valve overlap amount to a value equal to, or less than, a value at which an internal EGR amount does not become excessive during a retard-correction of the ignition timing. By applying the upper limit guard to the valve overlap amount using the upper limit guard value, it is possible to suppress the valve overlap amount from increasing from the optimum value following a retard-correction of the ignition timing, as well as suppress the value of overlap amount from being reduced when it is not deviating from the optimum value and is below the upper limit guard value.
Abstract:
A preheating apparatus of an analysis apparatus for determining the in quantity hydrogen and carbon contained in a sample such as steel is employed to remove moisture adhered to a sample of the steel by spot-heating focused on the sample in a transparent bent tube which is turned one-half in its circumferential direction after completion of its preheating to make it possible for the sample to be transfered by gravity from the bent tube into a graphite crucible in which the sample is fused to extract hydrogen and carbon contained in the sample, so that the thus extracted hydrogen and carbon are determined.
Abstract:
When an abnormality determining process is cancelled when a fuel cut is stopped, an EGR valve (33), which is open wider than normal from the process, is returned to its original opening amount (i.e., fully closed), and fuel injection in an engine (1) is resumed. However, during execution of the abnormality determining process, an EGR passage (32) is full of air. Also, when the EGR valve (33) is returned to the fully closed state, there is a response delay in the change in the flowrate of air that flows from the EGR passage (32) into the air passage (4) following that return, such that excess air flows into the air passage (4). As a result, the intake air amount of the engine (1) becomes excessive for the fuel injection quantity after fuel injection resumes. The fuel injection quantity is thus increase corrected to inhibit this from happening.
Abstract:
Based on results of a knock control for adjusting ignition timing in accordance with the occurrence of knocking, an electronic control unit computes deposit required ignition timing akgrg, which is ignition timing determined by taking adhesion of deposits in an internal combustion engine into consideration. Based on the deposit required ignition timing akgrg, the electronic control unit reduces a vvt allowable variable range of a target VVT advancement amount, which is a control target value of a variable valve timing mechanism. The electronic control unit corrects a required ignition timing based on the actual VVT advancement amount vt, which is chanted according to the reduction of the allowable variable range of the target VVT advancement amount. As a result, problems resulting from the adhesion of deposits are effectively avoided.
Abstract:
An engine output for bringing the drive power of a motor vehicle to a requested value is determined as a target output. One of the lean burn and the stoichiometric burn is selected as a combustion form that achieves a best fuel consumption performance in terms of the control of the actual engine output to the target output. That is, an output value that serves as a criterion for determining whether to switch the combustion force is determined based on the minimum fuel consumption rate during the stoichiometric-burn operation and the minimum fuel consumption rate during the lean-burn operation in which the fuel consumption involved in the rich spike control is taken into account. If the target output is less than the output value, the lean-burn operation is performed. If the target output is greater than the output value, the stoichiometric-burn operation is performed.
Abstract:
A control system for a vehicle including a continuously variable is constructed: such that a target output of a prime mover for achieving a target driving force is determined on the basis of the target driving force; such that a target output speed is determined on the basis of the target output; such that a gear ratio of the continuously variable transmission is controlled so that an output speed of the prime mover may be the target output speed; such that a target output torque of the prime mover for achieving the target driving force is determined on the basis of the target driving force; and such that a load of the prime mover is controlled on the basis of the target output torque. The control system further comprises a corrector for correcting a control quantity to control the load of the prime mover so that the output torque of the prime mover may have the sum of the target output torque and an output torque for keeping the idle run of the prime mover.
Abstract:
A fuel supply amount control apparatus for an internal combustion engine uses an idling control amount QISC obtained by reducing an idling control amount Qa by an idling control amount correction value KQISC, when determining the amount of fuel injected for the lean combustion when the vehicle is running. Therefore, during the lean combustion with the D range is selected, there is substantially no difference between the road load amount of fuel injected during the idling state and the road load amount of fuel injected during a low-speed running of the vehicle. Hence, an increase in the amount of fuel injection during the low-speed running of the vehicle based on the lean combustion achieved upon a fuel increase request does not result in an excessively great output torque of the engine, so that the low-speed running of the vehicle becomes stable and good drivability can be maintained.
Abstract:
A flow control valve is located in a coolant circuit that extends through an engine. The flow control valve is operated in accordance with a control mode selected from a full closing control mode, a full opening control mode, and a feedback control mode. When switching from one control mode to another, the flow control valve is controlled in accordance with a transitional control procedure selected from different types of transitional control procedures. The transitional control procedure to be performed is selected depending on which control modes are performed before and after the control mode switching and/or the current condition of the engine. Transitional controlling of the flow control valve is thus appropriately conducted.
Abstract:
A target driving force is calculated by an ECU on the basis of an accelerator opening and a vehicle speed, and a rounded target driving force value (or a corrected target driving force), as gradually changed from the driving force, is determined in the course to reach the target driving force. On the other hand, a rounded target power value (or a corrected target power) is determined on the basis of the rounded target driving force value. Moreover, the gear ratio of a CVT is controlled according to a target power calculated on the basis of the target driving force, and the load on an engine is controlled on the basis of the rounded target power value, so that the reduction in the power characteristics or the physical discomfort, as might otherwise be caused by the difference in the response between the engine and the CVT, is loosened.