Abstract:
The present invention relates to an electron-emitting device and an image display apparatus in which the electron-emitting device is provided. In the electron-emitting device, a substrate has sides in two orthogonal first directions. A plurality of pairs of electrodes are disposed on the substrate. A conductive thin film is disposed between each of the electrode pairs. A plurality of surface conduction electron-emitting elements are disposed in the conductive thin film by discharging drops of a source material of the film thereto, each electron-emitting element spaced apart from the opposing electrodes of one of the electrode pairs. The electron-emitting elements are arrayed in a matrix formation, the matrix having rows and columns in two orthogonal second directions, the electron-emitting elements being disposed such that the second directions of the matrix are parallel to the first directions of the substrate. Further, the present invention relates to an electron-emitting device production apparatus wherein an effective area in which a discharge head is capable of discharging the drops to the substrate is larger than an entire region that covers the electron-emitting elements on the substrate.
Abstract:
An electron-emitting device and an image display apparatus in which the electron-emitting device is provided. In the electron-emitting device, a substrate has sides in two orthogonal first directions. A plurality of pairs of electrodes are disposed on the substrate. A conductive thin film is disposed between each of the electrode pairs. A plurality of surface conduction electron-emitting elements are disposed in the conductive thin film by discharging drops of a source material of the film thereto, each electron-emitting element spaced apart from the opposing electrodes of one of the electrode pairs. The electron-emitting elements are arrayed in a matrix formation, the matrix having rows and columns in two orthogonal second directions, the electron-emitting elements being disposed such that the second directions of the matrix are parallel to the first directions of the substrate.
Abstract:
A method of producing an image-forming apparatus wherein a face plate having phosphors of the three primary colors is opposed to a rear plate comprising a plurality of electron-emitting devices, each having a first electrode and a second electrode, and a plurality of column-directional wires and row-directional wires connected to the plurality of electron-emitting devices, the method comprising: a step of arranging a plurality of first electrodes and second electrodes on the rear plate; a step of forming a plurality of column-directional wires, wherein each of the column-directional wires connects commonly a plurality of said first electrodes; a step of forming a plurality of row-directional wires, wherein each of the row-directional wires connects commonly a plurality of said second electrodes, the row direction is substantially perpendicular to the column direction, and intervals of the row-directional wires are larger than those of the column-directional wires; a step of forming an insulating layer between said row-directional wire and column-directional wire at each of intersections between the row-directional wires and column-directional wires; and a step of applying a liquid containing at least a metal or a semiconductor so as to connect the first and second electrodes to each other according to an ink jet method, wherein the step of forming the column-directional wires comprises: a step of forming a film comprising a photosensitive material and an electroconductive material on the rear plate; a step of irradiating desired areas of the film with light; a step of patterning the film; and a step of baking the patterned film.
Abstract:
In regard to an electroconductive pattern including a high resistivity region partially, by forming a pattern with a photosensitive resin, making the pattern absorb liquid containing a metal component, and baking this, an electroconductive film of metal oxide is formed, this electroconductive film is further covered by a gas shielding layer, and portions which are not shielded are reduced selectively to be made low resistance metal film regions. Since the material which constitutes the electroconductive pattern is hardly removed, a load concerning material reuse is mitigated and material cost is reduced.
Abstract:
An irregular shift of the electron beam caused by a spacer is compensated without making a design change of the spacer. A rear plate 1 in which an electron source substrate 9 disposed with plural electron-emitting devices 8 emitting the electron is fixed and a face plate 2 in which a metal back 11 for accelerating the electron is formed are disposed in opposition to each other, and these plates are supported by the spacers 3 with constant intervals, and the initial velocity vector of the electron emitted from the electron-emitting device 8 is different according to the distance from the spacer 3.
Abstract:
To reuse glass used in a flat panel display, processing suitable for global environment such as processing of separating a lead component must be realized. A disassembly processing method for a flat panel display having a structure in which a face plate and rear plate mainly containing glass are airtightly joined via a frame with frit glass is characterized by including the step of separating the face plate and rear plate joined with the frit glass. The separation step is characterized by separating the face plate and rear plate by cutting, dissolution, or melting.
Abstract:
In an electron-emitting device having a pair of electric conductors disposed on a substrate in opposed relationship with each other, and a pair of piled films composed chiefly of carbon and connected to the pair of electric conductors and disposed with a gap interposed therebetween, the piled films contain therein one or more kinds of elements selected from the group of lithium, potassium, sodium, calcium, strontium and barium within the range of 1 mol % to 5 mol % in terms of the percentage to carbon.
Abstract:
A method for forming patterned insulating elements on a substrate includes a plurality of exposure steps of exposing a photosensitive paste provided on the substrate through at least one mask having a predetermined pattern; a developing step of developing the exposed photosensitive paste to form a precursor pattern; and a firing step of firing the precursor pattern to form the patterned insulating elements. This method is applied to a method for forming an electron source and a method for forming an image display device including the electron source.
Abstract:
There are provided an electron source apparatus capable of suppressing variations in electron emission state from electron-emitting devices even with an arrangement using spacers (9), and an image forming apparatus using the electron source apparatus. A plurality of row-direction wiring lines (8) and a plurality of column-direction wiring lines (6) are formed on a substrate (1) so as to cross each other. An electron-emitting device made up of device electrodes (2, 3), a conductive film (4), and an electron-emitting portion 5 is formed at each intersection between the row-direction wiring line (8) and the column-direction wiring line (6). The spacers (9) are arranged on some of the row-direction wiring lines (8). The column-direction wiring lines (6) are respectively connected to controlled constant current sources (221a, 221b, 221c) serving as current sources capable of outputting desired current values. The respective row-direction wiring lines (8) are connected to a voltage application means constituted by a voltage source (223) and a switching circuit (222) for selecting the row-direction wiring lines (8) while sequentially scanning them.
Abstract:
An electron emission device is provided which has sufficient on/off characteristics and is capable of efficiently emitting electrons with a low voltage. An electron emission device includes a substrate, a cathode electrode, a gate electrode, which are arranged on the substrate, an insulation layer covering the surface of the cathode electrode, and a dipole layer formed by terminating the surface of the insulation layer with hydrogen.