Abstract:
An information storage device includes a storage node, a write unit configured to write information to a first magnetic domain region of the storage node, and a read unit configured to read information from a second magnetic domain region of the storage node. The information storage device further includes a temporary storage unit configured to temporarily store information read by the read unit, and a write control unit electrically connected to the temporary storage unit and configured to control current supplied to the write unit. The information read from the second magnetic domain region is stored in the temporary storage unit and written to the first magnetic domain region.
Abstract:
A method of operating an information storage device using a magnetic domain wall movement in a magnetic nanowire is provided. The magnetic nanowire includes a plurality of magnetic domains and pinning sites formed in regions between the magnetic domains. The method includes depinning the magnetic domain wall from a first pinning site by applying a first pulse current having a first pulse current density to the magnetic nanowire and moving the magnetic domain wall to a second pinning site by applying a second pulse current having a second pulse current density to the magnetic nanowire. The first pulse current density is greater than the second pulse current density.
Abstract:
A system and methodology that can minimize disturbance during an AC operation associated with a memory, such as, program, read and/or erase, is provided. The system pre-charges all or a desired subset of the bit lines in a memory array to a specified voltage, during an AC operation to facilitate reducing AC disturbances between neighboring cells. A pre-charge voltage can be applied to all bit lines in a block in the memory array, or to bit lines associated with a selected memory cell and neighbor memory cells adjacent to the selected memory cell in the block. The system ensures that source and drain voltage levels can be set to desired levels at the same or substantially the same time, while selecting a memory cell. This can facilitate minimizing AC disturbances in the selected memory cell during the AC operation.
Abstract:
A fuel supply apparatus for a combustor configured to prevent or substantially prevent a flashback from being generated from the combustor. A fuel supply apparatus includes a fuel distribution part having a first opening part and a second opening part, the fuel distribution part configured to alternately discharge a fuel from the first opening part and the second opening part; and a housing having a first channel and a second channel, wherein an intermediate part of the first channel is coupled to and in fluid communication with the first opening part, and an intermediate part of the second channel is coupled to and in fluid communication with the second opening part.
Abstract:
A magnetic structure includes a first portion and a plurality of second portions. The first portion extends in a first direction. The plurality of second portions extend from ends of the first portion in a second direction. The first and second directions are perpendicular to one another. Two magnetic domains magnetized in directions opposite to each other and a magnetic domain wall between the magnetic domains are formed in the magnetic structure.
Abstract:
A storage node of a magnetic memory device includes: a lower magnetic layer, a tunnel barrier layer formed on the lower magnetic layer, and a free magnetic layer formed on the tunnel barrier. The free magnetic layer has a magnetization direction that is switchable in response to a spin current. The free magnetic layer has a cap structure surrounding at least one material layer on which the free magnetic layer is formed.
Abstract:
A reformer for a fuel cell system includes a heating source for generating heat by a reaction of a fuel and an oxidant using an oxidizing catalyst, and a reforming reaction part for generating hydrogen by a reforming catalyst reaction. The oxidizing catalyst includes a solid acid, including a strong acid ion and an inorganic oxide, and a platinum-based metal. The reformer for a fuel cell system can start a fuel oxidation catalyst reaction at a low temperature with the heating source having a simplified structure.
Abstract:
Oscillators and methods of operating the same, the oscillators include a pinned layer having a fixed magnetization direction, a first free layer over the pinned layer, and a second free layer over the first free layer. The oscillators are configured to generate a signal using precession of a magnetic moment of at least one of the first and second free layers.
Abstract:
A memory cell includes: a memory cell array unit having a plurality of nano wires arranged vertically on a substrate, each of the plurality of nano wires having a plurality of domains for storing information; a nano wire selection unit formed on the substrate and configured to select at least one of the plurality of nano wires; a domain movement control unit formed on the substrate and configured to control a domain movement operation with respect to at least one of the plurality of nano wires; and a read/write control unit formed on the substrate and configured to control at least one of a read operation and a write operation with respect to at least one of the plurality of nano wires.
Abstract:
An information storage device includes a magnetic structure having a buffer track and a plurality of storage tracks connected to the buffer track. A write/read unit is disposed on the magnetic structure, and a plurality of switching devices are respectively connected to the buffer track, the plurality of storage tracks, and the write/read unit. The switching devices that are respectively connected to the buffer track and the storage tracks. The information storage device further includes a circuit configured to supply current to at least one of the magnetic structure and the write/read unit.