Abstract:
A touch substrate, a display device and a driving method thereof, touch pressure driving electrodes and touch pressure sensing electrodes provided between the layer where the touch detecting electrodes is located and the substrate carrier are added within the touch substrate, and the touch pressure sensing electrodes and the touch pressure driving electrodes constitute a mutual-capacitance structure. When the touch substrate is pressed, the distance between the touch substrate and the underlying metal layer becomes small, causing that capacitance value of the mutual-capacitance structure becomes small. During the time period for detecting pressure, through applying the touch driving signal to the touch pressure driving electrodes to detect the change of signal amount of the touch pressure sensing electrodes caused by the pressure on the touch position, the change of the capacitance value of the mutual-capacitance structure can be determined to achieve the function of pressure sensing. During the time period for detecting touching, the touch detecting electrodes, the touch pressure driving electrodes, and the touch pressure sensing electrodes are applied with the same touch detecting signal simultaneously, the touch position can be determined by detecting the change of the capacitance value of each of the touch detecting electrodes, and the function of the two-dimensional detection of touching can be realized.
Abstract:
A display device and a driving method thereof, and an electronic device are provided. The display device includes: an array substrate and an opposing substrate arranged opposite to each other, a touch electrode pattern provided between the array substrate and the opposing substrate, a backlight module provided below the array substrate; and a counter electrode provided on the backlight module; the counter electrode and the touch electrode pattern forming a capacitive structure; in a touch detection period, a touch detection signal is loaded onto the touch electrode pattern and the counter electrode at the same time, to determine a touch position; in a pressure detection period, a touch detection signal is loaded onto the touch electrode pattern or the counter electrode, to determine a magnitude of pressure in the touch position.
Abstract:
An in-cell touch display, a drive method thereof, and a display device. When the touch display is in a display phase, each common electrode region is supplied with a common electrode signal via a respective connection line, and the data lines are supplied with respective data signals. When the touch display is in a touch control phase, the plurality of common electrode blocks in each common electrode region are used as touch control driving electrodes and supplied with a touch control driving signal through the respective connection line, and at least a portion of the data lines are used as touch control sensing signal lines for transmission of generated touch control sensing signals.
Abstract:
The present disclosure provides an intelligent blind guiding device, wherein a satellite positioning module is configured to acquire a location information representative of a user's location; an ultrasonic module is configured to acquire an obstacle information by detecting surrounding obstacles; a positioning analysis module is configured to acquire a revised location information; a voice input module is configured to acquire a destination information; a central processing unit is configured to determine a travel solution; and a prompt module is configured to broadcast the travel solution. The present disclosure may realize a precise positioning, and provide an optional travel mode for a blind person.
Abstract:
An operation body's feature information recognition method includes: acquiring pressing signals upon a user's operation body pressing a touch screen of an electronic apparatus; determining a pressing area of the operation body according to the pressing signals; determining whether the pressing duration of the operation body pressing area exceeds a preset duration; if the pressing duration exceeds a preset duration, determining feature information of the operation body corresponding to the pressing area; and matching the feature information of the operation body with feature information stored locally to obtain a recognition result. The method simplifies the process of recognizing operation body's feature information palm, and improves the efficiency and accuracy of palm feature information recognition. An electronic apparatus, a safety apparatus and a palm print recognition device are also provided.
Abstract:
The present disclosure provides a micro-fluidic substrate, a micro-fluidic structure and a driving method thereof. The micro-fluidic substrate of the preset disclosure includes a substrate, and a plurality of driving electrodes on the substrate and configured to drive a droplet to move, the plurality of driving electrodes being in a same layer with a gap space between adjacent driving electrodes. The micro-fluidic substrate further includes: at least one auxiliary electrode on the substrate and configured to drive the droplet to move, an orthographic projection of the auxiliary electrode on the substrate at least partially overlapping with an orthographic projection of the gap space on the substrate, and the auxiliary electrode and the driving electrodes being in different layers.
Abstract:
A display panel and a display apparatus. The display panel includes: an array substrate, including: scanning lines, data lines and sub-pixels, where at least two sub-pixels adjacent in a first direction and a second direction constitute a pixel island; an opposing substrate; a liquid crystal layer; and supporting parts, including a plurality of first supporting parts and a plurality of second supporting parts. Each supporting part includes: a first sub-supporting part and a second sub-supporting part; orthographic projections of the first sub-supporting parts divide orthographic projections of the second sub-supporting parts into first parts and second parts; and in each supporting part, a length of the first part is not equal to a length of the second part.
Abstract:
An array substrate is provided. The array substrate includes a base substrate and a plurality of gate lines, a plurality of data lines, a common electrode layer and a plurality of pixel units arranged in an array disposed on the base substrate. Each of the pixel units includes a plurality of sub-pixel units defined by gate lines and data lines disposed to intersect each other laterally and vertically. The common electrode layer includes a plurality of common electrode blocks that double as self-capacitance electrodes, each of the common electrode blocks is connected with at least one wire, and the wires are in the middle of sub-pixel units of a same column.
Abstract:
A display substrate and a display device are provided. Sub-pixels in a display substrate are divided into sub-pixel groups, wherein the sub-pixel groups include at least two sub-pixels, and at least two sub-pixels share the same pixel driving circuit; at least two light-emitting control sub-circuit in the pixel driving circuit correspond to at least two light-emitting element included in at least two sub-pixels, at least two light-emitting control sub-circuits correspond to at least two light-emitting control signal lines, and each light-emitting control sub-circuit is coupled to an output terminal of a compensation driving sub-circuit, a corresponding light-emitting element and a corresponding light-emitting control signal line; each light-emitting control sub-circuit is configured to control turning on or off a connection between the output terminal of the compensation driving sub-circuit and the corresponding light-emitting element under the control of the corresponding light-emitting control signal line.
Abstract:
A light emitting substrate is provided. The light emitting substrate includes at least one light emitting controlling unit. The at least one light emitting controlling unit includes a plurality of light emitting elements arranged in M rows and N columns and grouped into (P×Q) number of sub-units, M being an integer equal to or greater than one, N being an integer equal to or greater than one, P being an integer equal to or greater than one, and Q being an integer equal to or greater than one; P groups of first voltage signal lines; and Q groups of second voltage signal lines. The (P×Q) number of sub-units are arranged in P rows and Q columns. A respective sub-unit in a p-th row and a q-th column includes K columns of light emitting elements, K being an integer equal to or greater than one.