Method and apparatus for joint optimization of multi-UAV task assignment and path planning

    公开(公告)号:US10140875B1

    公开(公告)日:2018-11-27

    申请号:US15953881

    申请日:2018-04-16

    摘要: The embodiments of the present invention disclose a method and apparatus for joint optimization of multi-UAV task assignment and path planning. The method comprises: obtaining the location information of a plurality of UAVs and a plurality of target points, the dispersion of groundspeed course angle, and motion parameters of each UAV and wind field; constructing an initial population based on the location information, the dispersion of groundspeed course angle and a preset genetic algorithm; determining the flight status of each UAV and the flight time taken by each UAV to complete a path segment of the corresponding Dubins flight path based on the initial population and the motion parameters, obtaining the total time taken by all the UAVs corresponding to each chromosome to complete the task based on the flight time of the path segment; and subjecting the chromosomes in the initial population to crossover and mutation based on the genetic algorithm and, when a predetermined number of iterations is reached, selecting the optimal Dubins flight path as the joint optimization result. In the embodiments of the present invention, the UAV flight path planning problem is combined with the actual flight environment of the UAV, so that the optimal flight path obtained is superior to the solution in which the UAV speed is constant.

    Enhanced dynamic range RF pulse measurement system

    公开(公告)号:US10078109B2

    公开(公告)日:2018-09-18

    申请号:US15196028

    申请日:2016-06-29

    摘要: The enhanced dynamic range RF pulse measurement system accepts an RF source for spectral analysis. The system includes an RF splitter accepting the RF source under analysis as input. The split output connects to identical precision timing insertion units (TIU) 1 and 2, each time tagging its respective RF signal stream. TIU 1 feeds a first real-time spectrum analyzer (RSA 1) set for strong signals at an exemplary −3.00 dBm reference level. TIU 2 feeds a second real-time spectrum analyzer (RSA 2) set for weak signals at an exemplary −15.00 dBm reference level. Outputs of RSA 1 and RSA 2 are then fed to a multi-channel recorder which records the respective time tagged RF signal streams. For each signal stream real-time PDW processing is performed. Output of the recorder feeds a workstation that for any given time tag selects and processes the channel having the highest quality signal.

    Flow sensor circuit for monitoring a fluid flowpath

    公开(公告)号:US10018493B2

    公开(公告)日:2018-07-10

    申请号:US14775433

    申请日:2013-03-12

    CPC分类号: G01F1/698 G01F1/69 G01F1/696

    摘要: A flow sensor circuit for a fluid flowpath having a self-heated thermistor situated in a fluid flowpath. The flow sensor circuit is configured to energize the thermistor sufficiently to heat the thermistor, calculate the slope of the leading edge of the rise in temperature of the thermistor when the thermistor is energized, and equate the slope to the state of the fluid flowing through the fluid flowpath. In another embodiment, the flow sensor circuit is configured to energize the thermistor, measure and calculate the average and standard deviation of the thermistor temperature, and determine the state of the flowpath using the thermistor temperature average and standard deviation.

    Method of removing recalcitrant organic pollutants

    公开(公告)号:US09994470B2

    公开(公告)日:2018-06-12

    申请号:US14003667

    申请日:2011-03-07

    摘要: Recalcitrant chemical oxygen demand (COD) of a liquid is reduced in a water treatment system. The method includes pretreating the liquid in a pretreatment unit to remove indigenous bacteria or microbes to a population level below which the indigenous organisms can interfere with the screened and externally introduced microorganisms. The liquid is then provided to a reactor that has a filter bed formed with a carrier material. Special microbes are screened and used to colonize the carrier material to remove recalcitrant COD. A biofilm is cultured on the surface of the carrier material to immobilize the screened microbes in the reactor. The method further includes percolating the liquid from the pretreatment unit through the filter bed colonized with the screened microbes to degrade at least part of the recalcitrant COD under aerobic conditions. In one embodiment, the filter is formed with biological granular activated carbon (GAC) as the carrier material and the screened microbes comprise at least one microbial species selected from the group consisting of Bacillus, Comamonas, Arthrobacter, Micrococcus, Pseudomonas, Pediococcus, Achromobacter, Flavobacterium, Mycobacterium, Rhodanobacter, Stenotrophomonas and Yeast.