Abstract:
A method for configuring a control device for integration of intelligent electrical field devices into a control or automation system having a flexibly expandable hardware structure is disclosed. A configuration of the system is created by a device configuration tool and a system configuration tool. Device configuration data is produced in the device configuration tool from a configuration device description and from a system configuration description provided by the system configuration tool. Project-specific libraries of the logical node types for the user-programmable controller can be created by a logical node type editor. A controller configuration tool can select for the created project-specific libraries to produce device-specific configuration descriptions.
Abstract:
A time sensitive network (TSN) simulator for connecting a first device of a distributed control system (DCS) for an industrial plant to at least one second device of the DCS that is configured as a TSN client, comprising a first interface that is connectable to the first device; a second interface that is connectable to the second device; and a simulation unit that is configured to forward network traffic between the first interface and the second interface and to modify and/or delay network traffic during this forwarding, thereby simulating the behavior of a real, non-perfect TSN that provides communication between the first device and the second device.
Abstract:
A method for managing communication with a building automation device, the method being performed in a gateway, the method including the steps of: establishing communication with the building automation device over a first communication protocol; installing executable software instructions on the building automation device over the first communication protocol to provide a capability to communicate over a second communication protocol; and establishing communication with the building automation device over the second communication protocol.
Abstract:
An insulation laminate is disclosed having a base laminate layer, with at least one flat side coated with a layer of an insulating varnish, the insulating varnish including a basecoat; and an added lubricant.
Abstract:
A safety control system has a control unit with safety control logic, a safety sensor arrangement, a machine arrangement operable in different operation modes, each operation mode having a different productivity, the control unit receiving and evaluating input from the safety sensor arrangement, and, in reaction to evaluation result(s), activating an operation mode determined by the safety control logic, the safety sensor arrangement having at least two functionally redundant subsystems, control unit input including information indicating availability of the functionally redundant subsystems, the control logic being configured to activate normal operation mode with normal productivity if input indicates availability of all subsystems, activate fail-stop operation mode with zero productivity if input indicates unavailability of all subsystems, activate fail-operate operation mode with productivity less than normal but above zero if input indicates at least temporary unavailability of at least one and availability of at least another one of the subsystems.
Abstract:
In an embodiment, the present invention provides a web-based visualization system of building or home automation, including: a web server, which is connected with at least two client devices and in the client devices are integrated at least one client display and a rendering engine. The rendering engine contains a resize engine, which is uploaded to the client devices when a client requests at least one dedicated web-side from the web server. The rendering engine includes a zoom in/out function of a displayed page on the client display.
Abstract:
A method for controlling a temperature of a building using a building thermal model of the building in a model predictive control (MPC) system includes measuring the temperature and a rate of change of temperature for at least one zone that is included in the building thermal model so as to determine an error from a temperature and rate of change of temperature that is predicted by the MPC system. Possible causes of the error and a probability of each of the possible causes of error occurring are determined. An impact of each of the possible causes is evaluated so as to identify at least one of the possible causes which would reduce the error. The building thermal model is adapted based on the at least one identified possible cause and the temperature of the building is controlled using the adapted building thermal model in an MPC controller.
Abstract:
A resistive voltage divider includes a first resistor and a second resistor electrically connected in series. Each of the resistors is made of an electrically resistive film material and applied in the form of a trace onto an insulating substrate. The divider's voltage ratio has a value between one hundred and one million, where two ends of the trace of the second resistor overlap at least in part with a first and a second) contacting terminal, respectively, and two ends of the trace of the first resistor overlap at least in part with the first and third contacting terminal, respectively. In order to decrease the parasitic capacitance between the first contacting terminal and the third contacting terminal, the second contacting terminal is placed with at least a screening part between the first and the third contacting terminals.
Abstract:
A system for parameterizing field devices of an automation or control system includes a higher-ranking unit, which is connected via a first communication link based on a first field bus protocol to a communication interface module. The module is connected via a second communication link based on a second field bus protocol to at least one field device. In the higher-ranking unit, sub-blocks are generated and stored from a data structure for configuring the field device that is stored in a device description file for the field device. A first network service transmits the parameters of the field device from the higher-ranking unit via the first communication link into a first functionality of the module that operates as a slave function. A further functionality integrated into the module evaluates parameters of the field device that are stored in sub-blocks and combines the parameters to form a single configuration block.
Abstract:
Exemplary systems and methods are directed to automated performance of a plant process in a control system included in a production management system. The control system including a processor that is configured with integration model code for executing an integration model. The processor is configured to integrate various software systems by establishing a connection to an enterprise resource planning system and exchange information between the plant process and a business process such that production data are received from the processes substantially in real time and an updated status of a production order is received continuously. The integration model includes placeholders associated with variables for at least one of events, devices and plants, placeholders associated with functions to be executed, functionalities which link the variables and call up the functions, mappings of parameters between the software systems to be linked, and requests for loading information from one software system to another.