Abstract:
Techniques for implementing series-fed antenna arrays with a variable dielectric waveguide. In one implementation, coupling elements with optional controlled phase shifters are placed adjacent each radiating element of the array. To avoid frequency sensitivity of the resulting array, one or more waveguides have a variable propagation constant. The variable waveguide may use certain materials exhibiting this phenomenon, or may have configurable gaps between layers. Plated-through holes and pins can control the gaps; and/or a 2-D circular or a rectangular travelling wave array of scattering elements can be used as well.
Abstract:
A touch screen, now incorporated in most smart phones, presents an effective and transparent method to incorporate continuous active user verification schemes. The projected capacitive grid structure can be used to capture information, such as from the user's fingerprint. This information may be used to verify the user, or that a valid user currently has possession of the mobile device, even while the user is not consciously engaged in an active verification interface. Further processing, such as habitual gesture recognition, can augment the process.
Abstract:
An electromagnetic energy concentrator uses a prism and waveguide with a gap layer of uniform thickness disposed between the prism and a first surface of waveguide. Energy detectors, which may be photovoltaics or miniaturized antenna elements are disposed adjacent to and co-extensive with a second surface of the waveguide. The detectors operate in each of at least two bands; a distance between detectors operating in a given band depends on a wavelength in the given band.
Abstract:
Techniques for implementing series-fed antenna arrays with a variable dielectric waveguide. In one implementation, coupling elements with optional controlled phase shifters are placed adjacent each radiating element of the array. To avoid frequency sensitivity of the resulting array, one or more waveguides have a variable propagation constant. The variable waveguide may use certain materials exhibiting this phenomenon, or may have configurable gaps between layers. Plated-through holes and pins can control the gaps; and/or a 2-D circular or a rectangular travelling wave array of scattering elements can be used as well.
Abstract:
Detection of objects such as a buried explosive device while operating from a moving platform using a radio frequency emission system having two modes. An electromagnetic wave emission and detection system operates in a first mode to locate objects of interest and in a second mode to determine if an object contains explosive materials. In the first mode, the emission and detection system preferably operates as a subwavelength focusing, wideband, superlens using a near field super gain synthetic aperture continuous wave (CW) swept radar. In the second mode the system preferably enabled after detection of an object in the first mode, uses chemical detection methods such as Nuclear Quadrupole Resonance (NQR).
Abstract:
Dispersive properties of a linear dispersive delay line are retained in a spiral configuration by constraining the radius of curvature depending on a desired propagation mode. The compact form factor spiral can be either a continuous spiral or a piecewise linear approximation. The spiral comprises a highly dielectric waveguide such as titanium dioxide or barium tetratitanate. Preferably, a spacer with a low dielectric constant and a microstrip are disposed on the top surface. The microstrip prevents attenuation of low frequencies, thereby increasing the operating frequency range. A second dielectric spacer and a second microstrip can be deposited on the bottom surface of the waveguide. Alternatively, the bottom surface of the waveguide can face a ground plane. The waveguide can be fed by horns or half-horns.
Abstract:
Detection of objects such as a buried explosive device while operating from a moving platform using a radio frequency emission system having two modes. An electromagnetic wave emission and detection system operates in a first mode to locate objects of interest and in a second mode to determine if an object contains explosive materials. In the first mode, the emission and detection system preferably operates as a subwavelength focusing, wideband, superlens using a near field super gain synthetic aperture continuous wave (CW) swept radar. In the second mode the system preferably enabled after detection of an object in the first mode, uses chemical detection methods such as Nuclear Quadrupole Resonance (NQR).
Abstract:
A loop antenna in an electric vehicle receives energy wirelessly from a source external to the vehicle, such as from a Radio Frequency (RF) emitter. The use of RF loop antennas to both transmit and receive power greatly reduces the need to align the vehicle with charging station equipment.
Abstract:
An antenna assembly operating in the AM/FM, 3G and 4G cellular, WiFi, Bluetooth, satellite and 5G bands. The assembly provides a wide bandwidth, orientation dependent, directional antenna via volumetric radiating elements that conformal to exterior surface(s) of a vehicle such as a passenger car. The volumetric antenna elements may be further controlled by embedded components and/or surrounded by controllable ground plane elements. In one application, the antenna may be used to detect a direction of approach by person to, for example, operate only certain door locks.