Abstract:
Use of high throughput methods to analyze samples for toxic elements originating from industrial hygiene and environmental sampling are described. These methods utilize optical detection methods using plates with arrays and microwells. Methods to fabricate samples in such plates are described. The invention is particularly illustrated by demonstrating its applicability for analysis of beryllium by fluorescence and uranium by phosphorescence. This invention also discloses the use of improved filtration method and use of reagents with low background signals.
Abstract:
This invention recognizes the hazards of materials used to make electrochromic devices and the resulting mirror assemblies for automotive use. The invention provides novel ways to reduce these hazards and to manufacture these mirrors using renewable resources and smaller environmental footprint.
Abstract:
This invention recognizes the hazards of beryllium and beryllium oxide in automotive applications and offers alternative material solutions. In particular, commercial electrochromic mirrors use beryllium comprising alloys for busbars and may also use beryllium oxide for the electronics used to power and control these mirrors. Further, this can be combined by reducing other known hazards such as mercury, cadmium, lead and antimony compounds.
Abstract:
An exterior reflective mirror element suitable for a vehicle includes a transparent glass substrate having a reflector and a visual indicator display disposed to the rear of the substrate. The visual indicator display may be part of a blind spot detection and display system of the vehicle wherein the visual indicator display is actuated to emit light responsive to a detection by a blind spot detection detector of the equipped vehicle of an overtaking vehicle in a side lane adjacent the side of the equipped vehicle. The visual indicator display includes at least a first indicator at a first location to the rear of the exterior reflective mirror element. A first portion of the reflector may be at least partially removed at the first location in order to establish an at least partially transmissive first portion of the exterior reflective mirror element at the first location.
Abstract:
An improved low-cost practical method of determining beryllium or a beryllium compound thereof in a sample is disclosed by measuring fluorescence. This method discloses methods to lower the back ground fluorescence. Further, the method is extended to improved analysis of beryllium in soils by including a heating step.
Abstract:
This invention discloses corrosion resistant metal compositions that may be used to form nanoparticles or for coating of particles. Further, such particles may be used to fabricate printable transparent conductors that may be used in electronic devices. Electrochromic displays formed using such conductors are described.
Abstract:
An exterior electrochromic reflective mirror element for a vehicular exterior rearview mirror assembly comprises an electrochromic cross-linked polymeric solid film disposed between a first substrate and a second substrate. The electrochromic cross-linked polymeric solid film contacts a transparent conductive layer of the first substrate and a conductive layer comprising a metallic reflective layer of the second substrate. A visual indicator display is disposed to the rear of said second substrate and is part of a blind spot detection and display system and is actuated to emit light responsive to a detection of another overtaking vehicle in a side lane. Light emitted by the visual indicator display passes through the second substrate, through the electrochromic cross-linked polymeric solid film and through the first substrate to be viewed by a driver of the vehicle equipped with the exterior electochromic reflective mirror element.
Abstract:
Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF4−), hexafluorophosphate (PF6−), hexafluoroarsenate (AsF6−), trifluoromethylsulfonate (CF3SO3−), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N−), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N−) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C−). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.
Abstract translation:射频衰减器及方法。 衰减器包括一对透明窗口。 窗户之间的一个房间里充满了熔盐。 优选的熔融盐包括季铵阳离子和含氟阴离子如四氟硼酸盐(BF 4 SO 4),六氟磷酸盐(PF 6 - ,六氟砷酸盐(AsF 6 SO 2),三氟甲基磺酸盐(CF 3 SO 3 SO 3) - 双(三氟甲磺酰基)酰亚胺((CF 3 SO 2)2 N - ),双(全氟乙基磺酰基)酰亚胺((CF 3)2,-SO 2 SO 2)2 N - )和三(三氟甲基磺酰基)甲基化物((CF 3 SO 2)3 C 0 - 。 可以在熔融盐中添加或电化学产生自由基或自由基阳离子以增强RF衰减。
Abstract:
A system is provided for detecting the presence of a human in a compartment of a vehicle that comprises a pyroelectric sensor and a control coupled to the pyroelectric sensor. The pyroelectric sensor comprises a first sensing element and a second sensing element. The first sensing element is arranged in an opposed electrical connection with respect to the second sensing element whereby infrared radiation from a human moving within the compartment is selectively detected by one of the first sensing element and the second sensing element, thereby producing an output signal of the pyroelectric sensor. This output signal is received by the control, and the control generates a control signal indicative of detection of a human within the compartment.
Abstract:
An electrochromic device is achieved that exhibits the characteristics of impact-resistant safety glass by subjecting a solid electrolyte sheet material and a peripheral sealant material sandwiched between substrates to heat and pressure such that the electrolyte bonds to the surfaces of the substrates with an adhesion of at least 1.8 kg/linear cm width causing the electrolyte to exhibit a tensile strength of at least 5 kg/cm2.
Abstract translation:通过使固体电解质片材和夹在基板之间的周边密封材料进行加热和压力,使电解质与基材的表面粘附,粘附在一起,实现了具有抗冲击性安全玻璃的特性的电致变色装置 至少1.8kg /直线厘米宽度,导致电解质表现出至少5kg / cm 2的拉伸强度。