Abstract:
A safety device for a motor vehicle including a front-end structure, a front bulkhead, which separates the front-end structure from an interior, and a brake apparatus fixed to the front bulkhead and including a brake cylinder, the brake cylinder includes a device for pivoting the brake apparatus, which device, in the event of a vehicle crash, interacts with structural elements disposed in the front-end structure. The safety of a driver present in the motor vehicle may be increased. The device for pivoting the brake apparatus includes a fastening portion and a slide portion with a slide plane.
Abstract:
A method is disclosed for measurement of wafers and other semiconductor components in a probe station, which serves for examination and testing of electronic components. The device under test is held by a chuck and at least one electric probe by a probe support and the device under test and the probe are selectively positioned relative to each other by a positioning device with electric drives and the device under test is contacted. The drive of the positioning device remains in a state of readiness until establishment of contact and is switched off after establishment of contact and before measurement of the device under test.
Abstract:
A wafer probe station is provided with a wafer chuck, a wafer fastened on the chuck by vacuum suction, and a probe needle arrangement above the wafer to test the wafer at high frequencies by contacting selected pads on the wafer and alternately pads on a calibration substrate also fastened on the wafer chuck. A procedure for reproduction of a calibration position of an aligned and afterwards displaced calibration substrate uses first and second measurement systems to calculate a new offset position of the calibration substrate after a second wafer is loaded on the wafer chuck. In a last step, the wafer chuck is driven by a 4axis manipulator stage to the new calibration position from the recent position.
Abstract:
The invention specifies a circuit arrangement with a radio-frequency mixer (4) in which a plurality of preamplifiers (1, 2, 3) in a receiver have a common output node (6). This node is connected to a common, broadband radio-frequency mixer (4) via common coupling capacitances (41, 42). Switching means (17, 18; 27, 28; 37, 38) can be used to connect and disconnect the preamplifiers (1 to 3), which can be associated with various frequency bands, independently of one another. The present principle can be applied in multiband receivers in mobile radio and allows integration using little chip area with good radio-frequency characteristics.
Abstract:
The invention relates to a preamplifier circuit with at least one transistor that couples a signal input to a signal output. The signal input is supplied with a radio-frequency signal. In addition, the preamplifier circuit includes a switch that switchably couples the input to a reference potential and which, when the preamplifier is inactive, is closed. Hence, when the preamplifier is inactive, the input is put into a low-impedance state and the amplifier and downstream assemblies are protected from unwanted high-power interference signals. It is thus also possible to use other, fully integratable filter types in a transceiver's reception signal processing chain instead of external surface acoustic wave filters with a low level of complexity and without drawbacks.
Abstract:
The present invention provides a process for the specific determination of pancreatic .alpha.-amylase in the presence of salivary .alpha.-amylase in body fluids by reaction with a system for the detection of .alpha.-amylase with the use of an inhibitor for salivary .alpha.-amylase, wherein, as substrate, there is used a compound of the general formula:-- ##STR1## in which R.sub.1 is a straight-chained or branched alkyl or alkoyl radical containing up to 6 carbon atoms, a cycloalkyl or cycloalkoxyl radical containing 3 to 6 carbon atoms or a benzoyl, benzyl or phenyl radical which is optionally hydrophilically substituted, R.sub.2 is a hydrogen atom or in which R.sub.1 and R.sub.2 together form a methylene bridge, the hydrogen atoms of which, independently of one another, can each be substituted by an alkyl radical containing up to 5 carbon atoms or a phenyl radical, n is 1, 2 or 3 and X is an optically determinable residue. The present invention also provides a reagent for the specific determination of pancreatic .alpha.-amylase, as well as new compounds for use in the above process and reagent.
Abstract:
The present invention is concerned with a combination for the preservation of diagnostic tests, characterized by a content of at least two components selected from the group comprising 2-methyl-4-isothiazolin-3-one hydrochloride, 2-hydroxypyridine-N-oxide, chloroacetamide, (N,N-methylene-bis-(N-(1-hydroxymethyl-2,5-dioxo-4-imidazolidinyl))-urea and 5-bromo-5-nitro-1,3-dioxan.The present invention is also concerned with a preserved diagnostic test kit, comprising test reagents and at least two preservation agents selected from the group comprising 2-methyl-4-isothiazolin-3-one hydrochloride, 2-hydroxypyridine-N-oxide, chloroacetamide, (N,N-methylene-bis-(N-(1-hydroxymethyl)-2,5-dioxo-4-imidazolidinyl))-urea and 5-bromo-5-nitro-1,3-dioxan.
Abstract:
The present invention relates to an ultrasound transducer assembly for an ultrasound flowmeter, comprising a one-part or multi-part housing (2), which is provided to be connected to a line carrying the medium to be measured, wherein the ultrasound transducer transmits ultrasound through the housing (2) and the ultrasound transducer assembly has the following features: an ultrasound transducer body (4, 7) with a first main surface on the side facing the medium and a second main surface on the side facing away from the medium, first, preferably planar, contact means for electrically contacting the first main surface of the ultrasound transducer body (4, 7), second, preferably planar, contact means for electrically contacting the second main surface of the ultrasound transducer body (4, 7), wherein the first contact means are located between the ultrasound transducer body (4, 7) and the housing (2), through which ultrasound is to be transmitted, of the ultrasound flowmeter. To simplify the construction it is proposed to place the first contact means of the ultrasound transducer body (4, 7) loosely in the housing (2) or to fix them on the housing side.
Abstract:
A sealed mule shoe assembly for use in directional drilling, comprising an outer mule shoe and an inner housing for containing a directional measurement tool which is slidably insertable in the outer mule shoe. The mule shoe assembly advantageously has half-moon mating surfaces which advantageously allow use circumferential seals to thereby prevent ingress of abrasive materials into the landing area between the outer mule shoe and the inner housing, thereby greatly prolonging the life of the mule shoe assembly. Such seals further make use of hydrostatic forces downhole which cause locking landed engagement of the inner tool within the outer mule shoe. Cup seals or a check valve are used to allow escape of fluid when the inner tool is inserted within the outer mule shoe, and similarly prevent ingress of abrasive fluids and drill cuttings into the area of landed engagement.
Abstract:
The present invention relates to an ultrasound transducer assembly for an ultrasound flowmeter, comprising a one-part or multi-part housing (2), which is provided to be connected to a line carrying the medium to be measured, wherein the ultrasound transducer transmits ultrasound through the housing (2) and the ultrasound transducer assembly has the following features: an ultrasound transducer body (4, 7) with a first main surface on the side facing the medium and a second main surface on the side facing away from the medium, first, preferably planar, contact means for electrically contacting the first main surface of the ultrasound transducer body (4, 7), second, preferably planar, contact means for electrically contacting the second main surface of the ultrasound transducer body (4, 7), wherein the first contact means are located between the ultrasound transducer body (4, 7) and the housing (2), through which ultrasound is to be transmitted, of the ultrasound flowmeter. To simplify the construction it is proposed to place the first contact means of the ultrasound transducer body (4, 7) loosely in the housing (2) or to fix them on the housing side.