Abstract:
A method and an apparatus for delivering controlled heat independently on separate channels to perform ablation to treat benign prosthetic hypertrophy or hyperplasia (BPH). The dual channel power system provides independent control of radio frequency energy to each of two stylets protruding from a catheter into a human prostate through the urethra. The energy is independently transferred directly into the respective tissue around the stylets in such a manner as to provide respective tissue ablation without damage to surrounding tissues. Automatic shut-off of both channels occurs when any one of a number of surrounding areas to include the urethra or surrounding mass or the adjacent organs exceeds predetermined safe temperature limits. Automatic shut off of the individual channels occurs when the temperature of the tissue proximal to the respective stylet exceeds respective predetermined values. The dual channel system is microprocessor controlled and contains self-test startup and thermocouple autocalibration circuitry.
Abstract:
X-ray information is encoded onto photographic film by placing an optical grating between the light-emitting scintillating screen and the photographic emulsion. Information at different energies is encoded by displacing the grating between exposures or by using static gratings with an energy-selective dual screen.
Abstract:
An energy emitting apparatus for providing a medical therapy includes one or more energy generators, a logic controller connected to the one or more energy generators, and optionally one or more sensors that are connected to the logic controller for detecting muscle stimulation or electric conduction in a target nerve. The energy generators produce energy focused on the target nerve upon receiving a signal from the logic controller, and the energy can be varied by the logic controller according to an input provided by the one or more sensors. In certain embodiments, the energy emitting apparatus includes one or more conductive coils that produce a magnetic field focused on the target nerve upon receiving an electric current. In certain embodiments, a variety of cooling mechanisms or systems may be implemented for cooling the coil.
Abstract:
A working end of a surgical instrument that carries first and second jaws for delivering energy to tissue. In a preferred embodiment, at least one jaw of the working end defines a tissue-engagement plane that contacts the targeted tissue. The cross-section of the engagement plane reveals that it defines a surface conductive portion that overlies a variably resistive matrix of a temperature-sensitive resistive material or a pressure-sensitive resistive material. An interior of the jaw carries a conductive material or electrode that is coupled to an Rf source and controller. In an exemplary embodiment, the variably resistive matrix can comprise a positive temperature coefficient (PTC) material, such as a ceramic, that is engineered to exhibit a dramatically increasing resistance (i.e., several orders of magnitude) above a specific temperature of the material.
Abstract:
An apparatus and method for use in performing ablation of organs and other tissues includes a radio frequency generator which provides a radio frequency signal to ablation electrodes. The power level of the radio frequency signal is determined based on the subject area of ablation. The radio frequency signal is coupled with the ablation electrodes through a transformation circuit. The transformation circuit includes a high impedance transformation circuit and a low impedance transformation circuit. The high or low impedance transformation circuit is selected based on the impedance of the ablation electrodes in contact with the subject tissue. Vacuum level, impedance level, resistance level, and time are measured during ablation. If these parameters exceed determinable limits the ablation procedure is terminated.
Abstract:
An embodiment of a method of the invention provides a method for welding tissue comprising providing a tissue welding device having first and second tissue engaging surfaces with at least one surface including an electrode surface that defines a plurality of surface portions having different resistances to electrical current flow therethrough. A target tissue volume is engaged with the tissue engaging surfaces. Rf energy is delivered to the target volume to create a substantially even temperature distribution across at least a portion of the target tissue volume to substantially uniformly weld at least a portion of the target tissue volume.
Abstract:
An apparatus and method for use in performing ablation of organs and other tissues includes a radio frequency generator which provides a radio frequency signal to ablation electrodes. The power level of the radio frequency signal is determined based on the subject area of ablation. The radio frequency signal is coupled with the ablation electrodes through a transformation circuit. The transformation circuit includes a high impedance transformation circuit and a low impedance transformation circuit. The high or low impedance transformation circuit is selected based on the impedance of the ablation electrodes in contact with the subject tissue. Vacuum level, impedance level, resistance level, and time are measured during ablation. If these parameters exceed determinable limits the ablation procedure is terminated.
Abstract:
A working end of a surgical instrument that carries first and second jaws for delivering energy to tissue. In a preferred embodiment, at least one jaw of the working end defines a tissue-engagement plane that contacts the targeted tissue. The cross-section of the engagement plane reveals that it defines a surface conductive portion that overlies a variably resistive matrix of a temperature-sensitive resistive material or a pressure-sensitive resistive material. An interior of the jaw carries a conductive material or electrode that is coupled to an Rf source and controller. In an exemplary embodiment, the variably resistive matrix can comprise a positive temperature coefficient (PTC) material, such as a ceramic, that is engineered to exhibit a dramatically increasing resistance (i.e., several orders of magnitude) above a specific temperature of the material.
Abstract:
A method for controlled removal of surface tissue layer portions with a non-contact energy delivery modality that applies electrical energy to the targeted tissue surface to cause electrochemical ablation. The system provides (i) a UV energy source for irradiating a beam path through a selected neutral gas environment overlying the targeted tissue thereby creating an ionized gas volume (i.e., a conductive non-equilibrium plasma), and (ii) an electrical source for creating an intense electrical field in the ionized gas volume to thereby apply energy to the targeted surface layer to cause volatilization and removal of the surface layer in a plasma-mediated ablation. The ultrafast plasma creation events are repeated at a high repetition rate to ablate surface layer portions in a controlled manner. Each ultrafast plasma creation event is of such a high intensity and such a brief duration that thermal energy is not transferred to the tissue thus preventing collateral thermal damage to regions adjacent to the targeted site.
Abstract:
A medical probe for the heating of soft tissue, such as collagen tissue, wherein the medical probe has an elongated body with a proximal and distal end, a heating source, an RF electrode. Optional components include a thermocouple, and an insulative sleeve. The probe's elongated body is preferably hollow and flexible. The RF electrode and the heating source are powered by independently controlled power sources and cooperate to maintain a constant and smooth temperature to the distal end of the RF electrode. The heating source may be a contained liquid, such as saline, or an electrothermal mass, such as a ferrite, a toroid, a resistive element, or the like. Current induced from the conductor to the heating source creates heat in the heating source. The thermocouple measures the temperature of the heating source and adjusts the power to the conductor to maintain the heating source's temperature.