Abstract:
There are provided a multilayer chip capacitor and a circuit board device. The multilayer chip capacitor includes a capacitor body including a plurality of dielectric layers that are stacked, first and second outer electrodes formed on an outer surface of the capacitor body and having opposite polarity, first and second inner electrodes opposing each other, interleaved with the dielectric layers in the capacitor body, and each including an electrode plate forming capacitance and a lead extending from the electrode plate, the lead of the first inner electrode and the lead of the second electrode being respectively connected to the first and second outer electrodes, and third inner electrodes interposed between the first and second inner electrodes. At least one of the third inner electrodes adjacent to the first inner electrode includes a conductive pattern having the same shape as the lead of the first inner electrode and is connected to the first outer electrode. At least one of the third inner electrodes adjacent to the second inner electrode includes a conductive pattern having the same shape as the lead of the second inner electrode and is connected to the second outer electrode.
Abstract:
An integrated multilayer chip capacitor module including: plurality of multilayer chip capacitors arranged close to one another and co-planar with one another; and a capacitor support accommodating the multilayer chip capacitors, wherein each of the multilayer chip capacitors includes a rectangular parallelepiped capacitor body and a plurality of first and second external electrodes formed on at least two sides of the capacitor body, and the external electrodes on adjacent sides of adjacent ones of the multilayer chip capacitor in the capacitor support are electrically connected to each other by a conductive adhesive material.
Abstract:
A circuit board including: a substrate having a mounting area for mounting a vertical multilayer chip capacitor having first and second external electrodes of a first polarity and a third external electrode of a second polarity; first to third pads arranged on the mounting area, the first and second pads having the first polarity and disposed separately from each other on the mounting area, the third pad having the second polarity and disposed between the first and second pads to be connected to the third external electrode; at least one first via formed in the substrate and connected to the first pad; at least one second via formed in the substrate and connected to the second pad; and a plurality of third vias formed in the substrate and connected to the third pad. The first via is disposed adjacent to the third pad relative to a central line of the first pad, the second via is disposed adjacent to the third pad relative to a central line of the second pad, one or more of the third vias are disposed adjacent to the first via relative to a central line of the third pad, and the rest of the third vias are disposed adjacent to the second via relative to the central line of the third pad.
Abstract:
There is provided a multilayer chip capacitor a multilayer chip capacitor including: a capacitor body including first and second capacitor units arranged therein; and first to fourth outer electrodes, wherein the first capacitor unit includes first and second inner electrodes, and the first capacitor unit includes a plurality of capacitor elements each having a pair of the first and second inner electrodes repeatedly laminated, the second capacitor unit includes third and fourth inner electrodes, and the second capacitor unit includes at least one capacitor element having a pair of the third and fourth inner electrodes repeatedly laminated, and at least one of the capacitor elements of the first capacitor unit is different from the other capacitor elements of the first capacitor unit in a lamination number of the first and second inner electrodes or a resonant frequency.
Abstract:
A multilayer chip capacitor includes a capacitor body including a stack of a plurality of dielectric layers and having first and second side faces and first and second end faces, a plurality of external electrodes of opposite polarity alternated on each of the first and second side faces, and a plurality of internal electrodes each including one or two leads extending to an outer face of the capacitor body and respectively connected to the external electrodes. A horizontal distance between leads of the internal electrodes of opposite polarity adjacent to each other in a stack direction is longer than a pitch between the external electrodes of opposite polarity adjacent to each other on the same side face of the capacitor body.
Abstract:
A multilayer chip capacitor includes a capacitor body including first and second longer side surfaces facing each other and first and second shorter side surfaces facing each other, first and second external electrodes respectively disposed at the first and second longer side surfaces, one or more first internal electrode pairs each including first and second internal electrodes, and one or more second internal electrode pairs each including third and fourth internal electrodes. The first to fourth internal electrodes each have one lead and are sequentially disposed in a stacked direction. The first to fourth internal electrodes have first to fourth leads respectively extending to first to fourth corners or portions adjacent thereto, and alternately connected with the first and second external electrodes. The first internal electrode pair and the second internal electrode pair cause a current to diagonally flow in opposite directions with respect to a long side direction.
Abstract:
A multilayer chip capacitor including: a capacitor body having a lamination structure where a plurality of dielectric layers are laminated and including a first capacitor part and a second capacitor part arranged according to a lamination direction; first to fourth outer electrodes formed on side surfaces of the capacitor body, the first and third outer electrodes having the same polarity and the second and fourth outer electrodes having the same polarity opposite to that of the first outer electrode; and one or more connection conductor lines formed on an outer surface of the capacitor body and connecting the first outer electrode to the third outer electrode or connecting the second outer electrode to the fourth outer electrode.
Abstract:
There is provided a multilayer chip capacitor capable of tuning capacitance, including: a capacitor body where a plurality of dielectric layers are laminated; a plurality of pairs of first and second internal electrodes arranged alternately, while interposing a corresponding one of the dielectric layers; and a plurality of pairs of first and second external electrodes connected to the first and second internal electrodes, wherein the first and second internal electrodes include a plurality of groups each including at least one pair of the first and second internal electrodes, and the first and second internal electrodes of each of the groups are connected to different pairs of the first and second external electrodes, respectively, wherein a corresponding one of the pairs of the first and second external electrodes is selectively connected to power lines so that the multilayer chip capacitor has at least two different capacitances.
Abstract:
There is provided a laminated inductor including: a body where a plurality of magnetic layers are laminated; a coil part formed on the magnetic layers, the coil part including a plurality of conductor patterns and a plurality of conductive vias; first and second external electrodes formed on an outer surface of the body to connect to both ends of the coil part, respectively; and a non-magnetic conductor formed on at least one of the magnetic layers so as to relax magnetic saturation caused by direct current flowing through the coil part. The laminated inductor employs the non-magnetic conductor as a non-magnetic gap to be simplified in a manufacturing process and effectively improved in DC superposition characteristics.
Abstract:
An integrated multilayer chip capacitor module including: plurality of multilayer chip capacitors arranged close to one another and co-planar with one another; and a capacitor support accommodating the multilayer chip capacitors, wherein each of the multilayer chip capacitors includes a rectangular parallelepiped capacitor body and a plurality of first and second external electrodes formed on at least two sides of the capacitor body, and the external electrodes on adjacent sides of adjacent ones of the multilayer chip capacitor in the capacitor support are electrically connected to each other by a conductive adhesive material.