Abstract:
Disclosed herein is a mounting structure of a circuit board having a multi-layered ceramic capacitor thereon. The mounting structure of a circuit board having a multi-layered ceramic capacitor thereon, in which a dielectric layer on which inner electrodes are disposed is stacked and external electrode terminals connecting the inner electrodes in parallel are disposed on both ends thereof, wherein the inner electrodes of the multi-layered ceramic capacitor and the circuit board are disposed so as to be a horizontal direction to connect the external electrode terminals with a land on the circuit board by a conductive material and a ratio of a bonding area ASOLEDER of the conductive material to the area AMLCC of the external electrode terminals AMLCC is set to be less than 1.4, thereby remarkably reducing the vibration noise.
Abstract:
A multi-layered capacitor includes a capacitor element in which a plurality of dielectric layers are multi-layered, and which comprises a first inner electrode and a second inner electrode that are alternately formed on neighboring dielectric layers of the plurality of dielectric layers, a first external electrode and a second external electrode which are formed on an outside surface of the capacitor element to be electrically connected to the first inner electrode and the second inner electrode, respectively, and a deformation suppressing electrode which is formed on the outside surface of the capacitor element and separated from the first external electrode and the second external electrode to be electrically isolated from the first inner electrode and the second inner electrode.
Abstract:
A multilayer ceramic electronic component having high reliability by reducing equivalent series resistance (ESR) dispersion is provided. Connectivity between internal electrodes and external electrodes is secured by introducing dummy electrodes connected to first and second terminal electrodes, to third and fourth internal electrode layers. ESR dispersion of the multilayer ceramic electronic component is reduced to obtain high reliability.
Abstract:
There is provided a chip type laminated capacitor including: a ceramic body formed by laminating a dielectric layer having a thickness equal to 10 or more times an average particle diameter of a grain included therein and being 3 μm or less; first and second outer electrodes; a first inner electrode having one end forming a first margin together with one end surface of the ceramic body at which the second outer electrode is formed and the other end leading to the first outer electrode; and a second inner electrode having one end forming a second margin together with the other end surface of the ceramic body at which the first outer electrode is formed and the other end leading to the second outer electrode, wherein the first and second margins have different widths under a condition that they are 200 μm or less.
Abstract:
A multi-layered capacitor includes a capacitor element in which a plurality of dielectric layers are multi-layered, and which comprises a first inner electrode and a second inner electrode that are alternately formed on neighboring dielectric layers of the plurality of dielectric layers, a first external electrode and a second external electrode which are formed on an outside surface of the capacitor element to be electrically connected to the first inner electrode and the second inner electrode, respectively, and a deformation suppressing electrode which is formed on the outside surface of the capacitor element and separated from the first external electrode and the second external electrode to be electrically isolated from the first inner electrode and the second inner electrode.
Abstract:
A multilayer chip capacitor includes a capacitor body including a stack of a plurality of dielectric layers and having first and second side faces and first and second end faces, a plurality of external electrodes of opposite polarity alternated on each of the first and second side faces, and a plurality of internal electrodes each including one or two leads extending to an outer face of the capacitor body and respectively connected to the external electrodes. A horizontal distance between leads of the internal electrodes of opposite polarity adjacent to each other in a stack direction is longer than a pitch between the external electrodes of opposite polarity adjacent to each other on the same side face of the capacitor body.
Abstract:
A circuit board device includes a circuit board comprising a mounting area, and first and second power lines and a ground pad formed on the mounting area, and a vertical multilayer chip capacitor (MLCC) comprising a capacitor body, a plurality of first and second polarity inner electrodes, first and second outer electrodes, and a third outer electrode, wherein the first and second power lines are separately disposed on the mounting area, connected to the first and second outer electrodes, and electrically connected to each other only by the vertical MLCC, and the ground pad is disposed between the first and second power lines and connected to the third outer electrode.
Abstract:
A multilayer chip capacitor includes a capacitor body provided by a stack of a plurality of dielectric layers, a plurality of internal electrodes disposed in the capacitor body such that the internal electrodes of opposite polarities are alternately disposed to face each other with the dielectric layer interposed between each facing set of the internal electrodes, and a plurality of external electrodes disposed on an outer face of the capacitor body and electrically connected with the internal electrode. Each of the plurality of internal electrodes includes a main electrode part, and at least one lead extending from the main electrode part to a side face of the capacitor body and connected to a corresponding one of the external electrodes. The lead extends to the corresponding external electrode to be inclined with respect to the main electrode part thereof.
Abstract:
A multilayer capacitor array having a plurality of multilayer capacitor devices formed in a single multilayer structure, the multilayer capacitor array including: a capacitor body formed by depositing a plurality of dielectric layers and having first and second side surfaces opposite to each other; a plurality of first polarity internal electrodes and second polarity internal electrodes, disposed oppositely to each other in the capacitor body, interposing the dielectric layer there between, and formed of a single electrode plate comprising a single lead, respectively; and a plurality of first polarity external electrodes and second polarity external electrodes, formed on the first side surface and second side surface, respectively, and connected to a correspondent polarity internal electrode via the lead, the first polarity external electrode formed on the first side surface and the second polarity external electrode formed on the second side surface, wherein the numbers of the first polarity external electrodes and the second polarity external electrodes are two or more, respectively, and are identical to each other, and a total number of the multilayer capacitor devices in the multilayer capacitor array is identical to the number of the first polarity external electrodes.
Abstract:
A multilayer chip capacitor includes a capacitor body, a plurality of internal electrodes, and a plurality of external electrodes. The capacitor body is formed of a ceramic sintered product and has first and second side surfaces facing each other. The plurality of internal electrodes each of which has two leads extending to the first and second side surfaces of the capacitor body, respectively, are arranged such that the internal electrodes with one polarity and the internal electrodes with the other polarity are alternately stacked inside the capacitor body. The plurality of external electrodes are formed on the first and second side surfaces of the capacitor body along a stacked direction of the internal electrodes such that the external electrodes with one polarity and the external electrodes with the other polarity are alternately arranged on each of the first and second side surfaces, and are connected to the leads.