Abstract:
A method of transferring an electronic material and a method of manufacturing an electronic device using the method of transferring the electronic material. The method of transferring the electronic material includes dipping a template, on which an electronic material layer is formed, into a liquid medium, separating the electronic material layer from the template, and floating the electronic material layer on a surface of the liquid medium; raising up the electronic material layer floated on the surface of the liquid medium by using a target substrate and transferring the electronic material layer on the target substrate; and fixing the electronic material layer to the target substrate.
Abstract:
A method of cutting carbon nanotubes and carbon nanotubes prepared by the same are disclosed. The cutting method includes preparing a π-stacking complex including a doping metal, a non-polar molecule, and a bipolar solvent, adding carbon nanotubes to the π-stacking complex, followed by stirring at room temperature to prepare a metal-doped carbon nanotube solution, washing and drying the metal-doped carbon nanotube solution to prepare a metal-doped carbon nanotube powder, and performing nitric acid treatment to the metal-doped carbon nanotube powder, followed by cutting and washing with distilled water. Carbon nanotubes having a short and uniform length and open terminals can be produced in mass via a simple process, thereby expanding the uses and applications of carbon nanotubes.
Abstract:
A method of massively synthesizing double-walled carbon nanotubes is provided. In the method, catalyst metal particles having a size of a few nanometers are embedded in nano pores of a support material powder. Then, the support material powder embedding the catalyst metal particles is sintered at a temperature of 700-900° C. Then, the support material powder embedding the catalyst metal particles is loaded in a reactor. Thereafter, high purity double-walled carbon nanotubes are formed massively by vaporizing a carbon source solution at a temperature of 700-1100° C. and supplying the vaporized carbon source gas, or by directly supplying a carbon source gas to the reactor.
Abstract:
Disclosed herein is a method of analyzing portable Internet signals in a measuring instrument. The method includes the steps of (a) acquiring synchronization using a preamble included in a currently received frame, (b) acquiring the access parameters of a DL_MAP included in the frame, and checking the validity of the DL_MAP, (c) if, as a result of the check at step (b), the DL_MAP is determined to be valid, acquiring downlink parameters and burst configuration information by interpreting the DL_MAP, and (e) performing a variety of diagnoses, including evaluation of signal quality for each burst, using the parameters and the burst configuration information.
Abstract:
Disclosed herein are a WiMAX system analyzer having an RAS emulation function and a method of acquiring UL synchronization and testing a PSS. The WiMAX system analyzer includes a clock counter, a D/A conversion unit, an A/D conversion unit, an RF processing unit, switching means, a signal generation unit, a signal analysis unit, and control means. The clock counter creates a frame number. The D/A conversion unit converts a DL sub-frame into an analog signal. The A/D conversion unit converts a UL sub-frame signal into digital data. The RF processing unit RF-modulates the DL sub-frame, outputs the modulated DL sub-frame, and demodulating a modulated UL sub-frame. The switching means connects the RF processing unit to the D/A conversion unit or the A/D conversion unit. The signal generation unit assigns a CID, and creating a DL sub-frame. The signal analysis unit decodes the UL sub-frame, and conducts various analyses. The control means performs control so that the switching means connects to the A/D conversion unit.
Abstract:
A method of transferring an electronic material and a method of manufacturing an electronic device using the method of transferring the electronic material. The method of transferring the electronic material includes dipping a template, on which an electronic material layer is formed, into a liquid medium, separating the electronic material layer from the template, and floating the electronic material layer on a surface of the liquid medium; raising up the electronic material layer floated on the surface of the liquid medium by using a target substrate and transferring the electronic material layer on the target substrate; and fixing the electronic material layer to the target substrate.
Abstract:
Disclosed herein are a WiMAX system analyzer having an RAS emulation function and a method of acquiring UL synchronization and testing a PSS. The WiMAX system analyzer includes a clock counter, a D/A conversion unit, an A/D conversion unit, an RF processing unit, switching means, a signal generation unit, a signal analysis unit, and control means. The clock counter creates a frame number. The D/A conversion unit converts a DL sub-frame into an analog signal. The A/D conversion unit converts a UL sub-frame signal into digital data. The RF processing unit RF-modulates the DL sub-frame, outputs the modulated DL sub-frame, and demodulating a modulated UL sub-frame. The switching means connects the RF processing unit to the D/A conversion unit or the A/D conversion unit. The signal generation unit assigns a CID, and creating a DL sub-frame. The signal analysis unit decodes the UL sub-frame, and conducts various analyses. The control means performs control so that the switching means connects to the A/D conversion unit.
Abstract:
A method of synthesizing high purity carbon nanotubes vertically aligned over a large size substrate by thermal chemical vapor deposition (CVD). In the synthesis method, isolated nano-sized catalytic metal particles are formed over a substrate by etching, and purified carbon nanotubes are grown vertically aligned, from the catalytic metal particles by thermal CVD using a carbon source gas.
Abstract:
Surface field electron emitters using a carbon nanotube yarn and a method of fabricating the same are disclosed. To fabricate the carbon nanotube yarn for use in fabrication of simple and efficient carbon nanotube field electron emitters, the method performs densification of the carbon nanotube yarn during rotation of a plying unit and heat treatment of the carbon nanotube yarn that has passed through the plying unit without using organic or inorganic binders or polymer pastes. The method fabricates the carbon nanotube yarn with excellent homogeneity and reproducibility through a simple process. The carbon nanotube yarn-based surface field electron emitters can be applied to various light emitting devices.