Abstract:
The present disclosure relates to methods and systems for synthesis of bridged-hydropentacene, hydroanthracene and hydrotetracene from the precursor compounds pentacene derivatives, tetracene derivatives, and anthracene derivatives. The invention further relates to are methods and systems for forming thin films for use in electrically conductive assemblies, such as semiconductors or photovoltaic devices.
Abstract:
Methods for synthesizing 1,4-(ketone or ketal) bridged and/or 5,14-(ketone or ketal) bridged hydropentacenes useful as soluble precursors for formation of pentacene or substituted (e.g., halo) pentacenes; precursor compounds formed thereby; methods for preparing form the precursor compounds conductive thin films comprising pentacene or a substituted pentacene, and articles including such thin films are described. Also described are tetracene and anthracene derivatives which should also be useful in the formation of conductive thin films, among other uses.
Abstract:
Fabrication of organic light-emitting devices is disclosed by employing the efficient, multifunctional orange-red emitting osmium complex in combination with a second phosphorescent complex showing strong emission at the shorter wavelength region such as blue or blue-green emitting iridium (Ir) complex. The present invention provides WOLEDs with forward viewing efficiencies up to (17% photon/electron, 35.6 cd/A, 28 lm/W) and total peak external efficiencies up to (28.8%, 47.5 lm/W), giving the conceptual design for the highly efficient and color-stable phosphorescent WOLEDs.
Abstract:
An organic light emitting diode is provided. The organic light emitting diode includes a substrate, an electrode structure formed on said substrate, an organic layer formed on said electrode structure and a transparent electrode structure having at least one transparent dielectric layer with a relatively higher refraction index and deposited on said organic layer by thermal evaporation.
Abstract:
The present disclosure relates to methods and systems for synthesis of bridged-hydropentacene, hydroanthracene and hydrotetracene from the precursor compounds pentacene derivatives, tetracene derivatives, and anthracene derivatives. The invention further relates to methods and systems for forming thin films for use in electrically conductive assemblies, such as semiconductors or photovoltaic devices.
Abstract:
Systems for displaying images. A representative system incorporates an electroluminescent diode that comprises a substrate, an anode formed on the substrate, electroluminescent layers formed on the anode, a cathode formed on the electroluminescent layers, and a wavelength narrowing mirror structure formed directly on the cathode. Particularly, the wavelength narrowing mirror structure comprises a plurality of metal layers, and two adjacent metal layers separated by a dielectric layer.
Abstract:
A cathode structure for inverted OLEDs is provided, which comprise a substrate, a conductive electrode layer, an organic material layer, a dielectric layer, and a metal layer. Wherein, the conductive electrode layer is disposed over the substrate, the organic structure layer is disposed over the conductive electrode layer, the dielectric layer is disposed over the organic material layer, and the metal layer is disposed over the dielectric layer. Such cathode structure can function without using the metals of low work function and high chemical activity so as to benefit the manufacturing of organic light emitting devices and displays, and provide a more stable working conditions.
Abstract:
The present invention discloses a carbazole-based compound with a general formula as following: , wherein Q is a non-conjugate moiety, A comprises one of the following group: aryl moiety, hetero cycle, multiple fused ring, multiple fused ring with hetero atom(s). In addition, the present invention discloses a method for forming the carbazole-based compound.
Abstract:
A furan-containing compound of formula (I): Ar is aryl, heteroaryl, or oligoaryl; A is furyl; B is aryl or heteroaryl; R1 is hydrogen, alkenyl, alkynyl, aryl, heteroaryl, cyclyl, heterocyclyl, or oligoaryl; and R2 is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cyclyl, or heterocyclyl. The compound is useful as a hole transporting material in an organic light emitting diode device.
Abstract translation:含呋喃的式(I)化合物:Ar是芳基,杂芳基或低聚芳基; A是furyl; B是芳基或杂芳基; R 1是氢,烯基,炔基,芳基,杂芳基,环基,杂环基或低聚芳基; R 2是氢,烷基,烯基,炔基,芳基,杂芳基,环基或杂环基。 该化合物可用作有机发光二极管装置中的空穴传输材料。
Abstract:
A reconfigurable organic light-emitting device and the display apparatus employing such organic light-emitting device, wherein the reconfigurable organic light-emitting device comprises at least two organic light-emitting layers and at least one high-energy-gap carrier-blocking layer. The at least one high-energy-gap carrier-blocking layer is formed between each of the organic light-emitting layers. The structure of the reconfigurable organic light-emitting device can be reconfigured through heating, and the reconfigurable organic light-emitting device may thus emit light characteristic of one layer of the at least two organic light-emitting layers, after a bias voltage is applied on the upper electrode and the lower electrode of the reconfigurable organic light-emitting device. The heating may be performed with a built-in resistive heating source, an external heating source or a light-beam. By employing the reconfigurable organic light-emitting device, fixed-pattern, passive-matrix, and active-matrix display apparatus of multi-color or full-color may further be fabricated.