Abstract:
A delta-sigma modulator has a first node at which is produced a difference signal equal to the difference in magnitude between a continuous time analog signal and an analog feedback signal generated from a digital output signal; an integrator, coupled to the first node, to integrate the difference signal, thereby producing a first integrated signal; a photonic sampler, coupled to the integrator, to sample the first integrated signal, thereby producing a sampled integral signal; a quantizer, coupled to the sampler, to quantize the sampled integral signal, thereby producing the digital output signal; wherein an output of the quantizer is coupled to the first node through a digital to analog converter.
Abstract:
A method and apparatus for aligning an optical fiber to an optoelectronic element. The optical fiber and optoelectronic element are attached to a base. The base is made from a first crystallographic orientation material, and a lens is made from a second crystallographic orientation material. The lens is aligned to the base using the crystallographic orientations, and the optical fiber and optoelectronic element are aligned to the base/lens assembly.
Abstract:
A method and apparatus for aligning an optical fiber to an optoelectronic element. The optical fiber and optoelectronic element are attached to a base. The base is made from a first crystallographic orientation material, and a lens is made from a second crystallographic orientation material. The lens is aligned to the base using the crystallographic orientations, and the optical fiber and optoelectronic element are aligned to the base/lens assembly.
Abstract:
An optoelectronic device has an epitaxial layer structure that has a substrate and a first layer formed adjacent to the substrate. The first layer may, for example, form a contact layer. A second layer is formed adjacent to the first layer. The second layer forms a selectively optically varying layer, so that during a first state the second layer is optically absorbing and during a second state the layer is optically transparent. A third layer is formed adjacent to the second layer. A fourth layer is formed adjacent to the third layer. The fourth layer is an optically transparent layer. An optoelectronic device and an electronic device may be formed on the same substrate that share the same layers. The layers used depends upon the devices formed.
Abstract:
A display includes a plurality of light-emitting devices arranged as a matrix of pixels and an addressing circuit coupled to each respective light-emitting device. The addressing circuit includes a plurality of micromachined electromechanical (MEM) switches operable to control the plurality of light-emitting devices. Each MEM switch includes a cantilever beam and a control electrode spaced therefrom to deflect the cantilever beam electrostatically in order to close or open the switch.
Abstract:
A low-loss substrate system is provided for carrying and interconnecting optoelectronic/microwave circuits. The system includes a high-resistivity substrate, e.g., silicon of resistivity >1.times.10.sup.3 ohm-centimeter. A dielectric layer, e.g., silicon dioxide, is preferably deposited over at least a portion of the substrate. Low-loss microwave transmission members and passive microwave components, e.g., capacitors and spiral inductors, can be fabricated directly on the dielectric layer with thin-film techniques. Optoelectronic and microwave integrated circuits are preferably mounted on the substrate system with solder bumps and bonding pads. Other portions of the substrate can define grooves for receiving optical fibers. To enhance optical alignment, the grooves and bonding pads are preferably located with photolithographic techniques. The substrate system is especially suited for optoelectronic/microwave circuits that are realized with hybrid integration structures.
Abstract:
A dual band detector includes a substrate, a composite barrier, a first absorber on the substrate and on a light incident side of the composite barrier, the first absorber for detecting first infrared light wavelengths, a second absorber on the composite barrier on a side opposite the light incident side, the second absorber for detecting second infrared light wavelengths, wherein a bandgap of the first absorber is larger than that of the second absorber, wherein the composite barrier includes a first secondary barrier, a primary barrier, and a second secondary barrier, wherein the first and second secondary barriers may have a lower bandgap energy than the primary barrier, wherein the first or the second secondary barrier may have a doping level and type different from that of the primary barrier, and wherein at least the primary barrier blocks majority carriers and allows minority carrier flow.
Abstract:
An RF photonic link having at least one light source, at least one photodetector, multiple optoelectronic modulators, and an RF waveguide common to each one of said multiple optoelectronic modulators. The multiple optoelectronic modulators are optically arranged in parallel to receive light from said at least one light source and are disposed in said RF waveguide. The RF waveguide, in use, guides an RF electromagnetic field applied to each of the multiple optoelectronic modulators disposed therein, the RF electromagnetic field propagating through the RF waveguide in a direction that is perpendicular to a direction in which an optical field propagates through each of said optoelectronic modulators.
Abstract:
This invention provides a versatile unit cell as well as programmable and reconfigurable optical signal processors (such as optical-domain RF filters) that are constructed from arrays of those unit cells interconnected by optical waveguides. Each unit cell comprises an optical microdisk, an optical phase shifter, and at least one input/output optical waveguide, wherein the microdisk and the phase shifter are both optically connected to a common waveguide.
Abstract:
A thermoelectric generator element includes a first material configured to generate hole and electron carriers and a second material configured to produce a thermoelectric effect and thermally and physically connected to the first material, wherein an interface between the first material and the second material forms a heterojunction that acts to selectively permit injection of one of either the hole carrier or the electron carrier from the first material to the second material.