Abstract:
The present invention relates to a system, to a reactor and to a process for continuous industrial performance of a reaction wherein allyl methacrylate A is reacted with an HSi compound B in the presence of a catalyst C and optionally of further assistants, and the system is based at least on the combination of reactants (3) for components A (1) and B (2), at least one multielement reactor (5) which, in turn, comprises at least two reactor units in the form of exchangeable pre-reactors (5.1) and at least one further reactor unit (5.3) connected downstream of the pre-reactors, and on a product workup (8).
Abstract:
The invention relates to a process for preparing polysilanes by converting monosilane in the presence of hydrogen in a plasma, and to a plant for performing the process.
Abstract:
The invention relates to a process for preparing dimeric and/or trimeric silanes by conversion of monosilane in a plasma and to a plant for performance of the process.
Abstract:
An apparatus for preparing dimeric and trimeric silicon compounds is provided. The apparatus includes a reactor for generating a nonthermal plasma; a collecting vessel in product flow communication with the nonthermal plasma reactor; and a series of at least three rectification columns in flow communication with the collecting vessel.
Abstract:
An encapsulation structure for an optoelectronic component, may include: a thin-film encapsulation for protecting the optoelectronic component against chemical impurities; an adhesive layer formed on the thin-film encapsulation; and a cover layer formed on the adhesive layer and serving for protecting the thin-film encapsulation and/or the optoelectronic component against mechanical damage, wherein the adhesive layer is formed such that particle impurities situated at the surface of the thin-film encapsulation are at least partly enclosed by the adhesive layer.
Abstract:
An organic light-emitting component, may include: a first electrode; an organic light-generating layer structure on or above the first electrode; a second translucent electrode on or above the organic light-generating layer structure; an optically translucent layer structure on or above the second electrode; and a mirror layer structure on or above the optically translucent layer structure, wherein the mirror layer structure has a light-scattering structure on that side of the mirror layer structure which lies toward the optically translucent layer structure.
Abstract:
A reactor and a plant containing the reactor for conducting a continuous, industrial process for preparing high-purity silicon tetrachloride or high-purity germanium tetrachloride is provided. The plant contains a plasma reactor having a dielectric, a high voltage electrode and an earthed, metallic heat exchanger, in which the longitudinal axes of the dielectric, of the high-voltage electrode and of the earthed, metallic heat exchanger are oriented parallel to one another and at the same time parallel to the force vector of gravity.
Abstract:
A method for modification of a methane-containing gas stream, comprising the steps of: i) withdrawal of at least one substream from a methane-containing gas stream; ii) treatment of the substream with an electrically generated plasma, generating a modified gas composition which comprises a lower fraction of methane than the methane-containing gas stream used and iii) return of modified gas composition into the methane-containing gas stream. This method makes possible the storage of excess power in a natural gas line grid.
Abstract:
The present invention relates to processes for industrial pyrolysis of a carbohydrate or carbohydrate mixture with addition of amorphous carbon, to a pyrolysis product thus obtainable and to the use thereof, especially as a reducing agent in the production of silicon from silica and carbon at high temperature.
Abstract:
An electronic component (100), which comprises a substrate (1), at least one first electrode (3) arranged on the substrate (3) and a growth layer (7) on the side of the electrode (3) remote from the substrate (7), wherein the electrode (7) arranged on the growth layer (3) comprises a metal layer (9) with a thickness of less than or equal to 30 nm and the growth layer (7) has a thickness which is less than or equal to 10 nm. An electrical contact is also disclosed.