摘要:
A backside illuminated image sensor comprises a sensor layer implementing a plurality of photosensitive elements of a pixel array, an oxide layer adjacent a backside surface of the sensor layer, and at least one dielectric layer adjacent a frontside surface of the sensor layer. The sensor layer further comprises a plurality of backside trenches formed in the backside surface of the sensor layer and arranged to provide isolation between respective pairs of the photosensitive elements. The backside trenches have corresponding backside field isolation implant regions formed in the sensor layer, and the resulting structure provides reductions in carrier recombination and crosstalk between adjacent photosensitive elements. The image sensor may be implemented in a digital camera or other type of digital imaging device.
摘要:
A backside illuminated image sensor comprises a sensor layer having a plurality of photosensitive elements of a pixel array, an oxide layer adjacent a backside surface of the sensor layer, and at least one dielectric layer adjacent a frontside surface of the sensor layer. A color filter array is formed on a backside surface of the oxide layer, and a transparent cover is attached to the backside surface of the oxide layer overlying the color filter array. Redistribution metal conductors are in electrical contact with respective bond pad conductors through respective openings in the dielectric layer. A redistribution passivation layer is formed over the redistribution metal conductors, and contact metallizations are in electrical contact with respective ones of the respective redistribution metal conductors through respective openings in the redistribution passivation layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.
摘要:
A method and structure for providing a high energy implant in only the red pixel location of a CMOS image sensor. The implant increases the photon collection depth for the red pixels, which in turn increases the quantum efficiency for the red pixels. In one embodiment, a CMOS image sensor is formed on an p-type substrate and the high energy implant is a p-type implant that creates a p-type ground contact under the red pixel, thus reducing dark non-uniformity effects. In another embodiment, a CMOS image sensor is formed on an n-type substrate and a high energy p-type implant creates a p-type region under only the red pixel to increase photon collection depth, which in turn increases the quantum efficiency for the red pixels.
摘要:
A backside illuminated image sensor comprises a sensor layer having a plurality of photosensitive elements of a pixel array, an oxide layer adjacent a backside surface of the sensor layer, and at least one dielectric layer adjacent a frontside surface of the sensor layer. A color filter array is formed on a backside surface of the oxide layer, and a transparent cover is attached to the backside surface of the oxide layer overlying the color filter array. Redistribution metal conductors are in electrical contact with respective bond pad conductors through respective openings in the dielectric layer. A redistribution passivation layer is formed over the redistribution metal conductors, and contact metallizations are in electrical contact with respective ones of the respective redistribution metal conductors through respective openings in the redistribution passivation layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.
摘要:
A wafer-level packaging process for MEMS applications, and a MEMS package produced thereby, in which a SOI wafer is bonded to a MEMS wafer and the electrical feed-throughs are made through the SOI wafer. The method includes providing a first substrate having the functional element thereon connected to at least one metal lead, and providing a second SOI substrate having a recessed cavity in a silicon portion thereof with metal connectors formed in the recessed cavity. The non-recessed surfaces of the SOI substrate are bonded to the first substrate to form a hermetically sealed cavity. Within the cavity, the metal leads are bonded to respective metal connectors. Prior to bonding, the recessed cavity has a depth that is greater than the thickness of the functional element and less than the combined thickness of the metal leads and their respective metal connectors. After bonding, silicon from the SOI substrate is removed to expose the buried oxide portion of the SOI substrate. Metal pads are then formed through the SOI substrate to the metal connectors within the cavity. Wire bond pads are thereby connected to the functional element without opening the cavity to the environment. Electrical signals may then be fed through the SOI wafer to the metal connectors, metal leads and the functional element.
摘要:
In integrated circuit that yields the advantages of contemporary processing technologies and yet is irreparably damaged by ionizing radiation. An integrated circuit is designed and fabricated with contemporary processing technologies in well-known fashion, except that certain devices, called “safeguard” devices, are added to the integrated circuit. The safeguard devices are fabricated so that they, and not the other devices on the integrated circuit, are susceptible to ionizing radiation. Furthermore, the safeguard devices are coupled to the utile devices on the integrated circuit in such a manner than when the integrated circuit is bombarded with ionizing radiation the safeguard devices short and destroy the functionality of the utile devices, and, therefore, the functionality of the integrated circuit.
摘要:
A radiation hardened silicon-on-insulator transistor is disclosed. A dielectric layer is disposed on a substrate, and a transistor structure is disposed on the dielectric layer. The transistor structure includes a body region, a source region, a drain region, and a gate layer. The body region is formed on a first surface portion of the dielectric layer, the source region is formed on a second surface portion of the dielectric layer contiguous with the first surface portion, the drain region is formed on a third surface portion of the dielectric layer contiguous with the first surface portion, and the gate layer overlies the body region and being operative to induce a channel in that portion of the body region disposed between and adjoining the source region and the drain region. In addition, multiple diffusions are placed across two edges of the source region. These diffusions are ohmically connected to the body region via a body contact, and these diffusions are also connected to the source region by a self-aligned salicide.
摘要:
A wafer-level packaging process for MEMS applications, and a MEMS package produced thereby, in which a SOI wafer is bonded to a MEMS wafer and the electrical feed-throughs are made through the SOI wafer. The method includes providing a first substrate having the functional element thereon connected to at least one metal lead, and providing a second SOI substrate having a recessed cavity in a silicon portion thereof with metal connectors formed in the recessed cavity. The non-recessed surfaces of the SOI substrate are bonded to the first substrate to form a hermetically sealed cavity. Within the cavity, the metal leads are bonded to respective metal connectors. Prior to bonding, the recessed cavity has a depth that is greater than the thickness of the functional element and less than the combined thickness of the metal leads and their respective metal connectors. After bonding, silicon from the SOI substrate is removed to expose the buried oxide portion of the SOI substrate. Metal pads are then formed through the SOI substrate to the metal connectors within the cavity. Wire bond pads are thereby connected to the functional element without opening the cavity to the environment. Electrical signals may then be fed through the SOI wafer to the metal connectors, metal leads and the functional element.
摘要:
Semiconductor devices and integrated circuits that benefit from the advantages of contemporary processing technologies yet are irreparably damaged by ionizing radiation, and methods for making the same. Transistors that are particularly intolerant to ionizing radiation have a gate insulator that includes a portion of a screen layer that is used in conjunction with N- and P-well implantation. After the implantation step, the screen layer exhibits significantly degraded tolerance to ionizing radiation, so that a gate insulator incorporating a portion of such a screen layer will likewise be radiation intolerant. By selectively removing portions of the screen layer, a method is provided for co-locating radiation-tolerant and radiation-intolerant transistors on a substrate. A radiation intolerant integrated circuit is formed by adding “safeguard devices” to an integrated circuit. The safeguard devices are susceptible to relatively low doses of ionizing radiation while other “utile devices” on the integrated circuit are not. The safeguard devices are coupled to the utile devices in such a manner that when the integrated circuit is bombarded with ionizing radiation, the safeguard devices short and destroy the functionality of the utile devices, and, hence, the functionality of the integrated circuit.
摘要:
A backside illuminated image sensor includes a sensor layer comprising photosensitive elements of the pixel array, an epitaxial layer formed on a frontside surface of the sensor layer, and a color filter array formed on a backside surface of the sensor layer. The epitaxial layer comprises polysilicon color filter array alignment marks formed in locations corresponding to respective color filter array alignment mark openings in the frontside surface of the sensor layer. The color filter array is aligned to the color filter array alignment marks of the epitaxial layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.