Abstract:
An embodiment models and predicts energy consumption and provides recurring and realistic opportunities to reduce energy consumption throughout the work day or process cycle using user interfaces to convey positive and negative feedback in a controlled manner; and user experience, that reward positive changes with increased positive feedback and reduced negative feedback. Energy consumption of categories of appliances, devices, and equipment is considered a random variable. Using archived energy data, business data, and other related data, statistical modeling is used to create inverse cumulative probability distribution functions. An energy budget (consumption prediction) is computed so that it meets a probability p of the budget being exceeded during a given interval. When the budget is exceeded the feedback is negative, otherwise feedback is positive. Each budget is computed as the value b of the random variable such that the probability that the random variable will be less than or equal to b is 1-p.
Abstract:
Methods for creating high quality alarms raise EMS operator awareness to abnormal conditions in monitored assets across multiple sites in a single EMS software platform. An embodiment includes steps for accessing an alarm designer software tool that contains a library of alarm definitions and the ability to create new alarm definitions, clone and edit existing alarm definitions, lock alarm definitions and delete alarm definitions. Applicable data is defined using channel attributes identifying which channel or channels associated with the multiple monitored sites are to be evaluated for alarming conditions. The alarm frequency, trigger conditions, pending open duration, close conditions, and pending close duration are also defined. Alarms can trigger upon one or more channels' behavior over periods of time and conditional relationships between multiple channels. Close conditions for an alarm can be, but are not required to be, the resolution of the trigger conditions.
Abstract:
A system that enables power flow management for electrical devices, such as electric vehicles. Power flow managers can coordinate charging activities. Power flow decisions may be based on site-level information. Power flow management strategies may be optimized. Power spikes may be avoided by using safe failure modes. Generation stacks may be used for reducing cost. AGC commands are used to control power resources. Power regulation are apportioned to power resources, and power regulation ranges may be determined. Power flow strategies are implemented in response to changes in intermittent power flow. Locations of devices may be determined using network fingerprints. Power flow measurements are determined, and AC power flows are inferred from DC power flows. Network traffic consumption are minimized. Communication protocols are translated. Enhanced vehicle communications are provided that communicate to vehicle subsystems, that arbitrate smart charge points, and that use existing hardware, non-specific hardware, or control extensibility systems.
Abstract:
A system and method for managing power consumption and storage in a power grid. Measurements are received from a plurality of geographically distributed energy management controllers. Each energy management controllers has energy storage units with stored energy. The measurements comprise the energy production and storage capacity of the energy management controllers and their associated energy storage units. The measurements are processed, e.g., aggregated, and displayed on a graphical user interface. Commands are transmitted to a first subset of the energy management controllers to command the units to discharge their stored energy into a power grid through an inverter. Commands are transmitted to a second subset of the plurality of energy management controllers to store energy in each unit's energy storage unit.
Abstract:
A method of monitoring energy consumption includes steps of establishing an energy budget for a future time period, receiving device information for a plurality of electrical devices and associating the device information with the energy budget, periodically measuring electrical usage from the plurality of electrical devices, projecting future energy consumption for the future time period based on the measured electrical usage, comparing the projected future energy consumption to the energy budget, and if the projected future energy consumption deviates from the energy budget, automatically generating an alert. The projected future energy consumption can take into account various factors such as energy available from non-grid sources; weather forecasts; battery storage; and historical data. A system employing the method can automatically control devices to bring predicted consumption within the budget.
Abstract:
A system that enables power flow management for electrical devices, such as electric vehicles. Power flow managers can coordinate charging activities. Power flow decisions may be based on site-level information. Power flow management strategies may be optimized. Power spikes may be avoided by using safe failure modes. Generation stacks may be used for reducing cost. AGC commands are used to control power resources. Power regulation are apportioned to power resources, and power regulation ranges may be determined. Power flow strategies are implemented in response to changes in intermittent power flow. Locations of devices may be determined using network fingerprints. Power flow measurements are determined, and AC power flows are inferred from DC power flows. Network traffic consumption are minimized. Communication protocols are translated. Enhanced vehicle communications are provided that communicate to vehicle subsystems, that arbitrate smart charge points, and that use existing hardware, non-specific hardware, or control extensibility systems.
Abstract:
A VAR dispatch system. A central control system connected to a network is configured to receive data reflecting local variations in conditions on a power grid and to transmit system control commands over the network. A plurality of VAR dispatch devices are connected to the network and to the power grid. Each VAR dispatch device is configured to detect local variations in conditions on the power grid and to transmit the data reflecting such local variations to the central control system and to receive control commands from the central control system. Each VAR dispatch device is configured to store power and to output stored power to the power grid based on local variations in conditions on the power grid. Each VAR dispatch device is further configured to output stored power to the power grid when the VAR dispatch device receives system control commands from the central control system.
Abstract:
Methods for creating high quality alarms raise EMS operator awareness to abnormal conditions in monitored assets across multiple sites in a single EMS software platform. An embodiment includes steps for accessing an alarm designer software tool that contains a library of alarm definitions and the ability to create new alarm definitions, clone and edit existing alarm definitions, lock alarm definitions and delete alarm definitions. Applicable data is defined using channel attributes identifying which channel or channels associated with the multiple monitored sites are to be evaluated for alarming conditions. The alarm frequency, trigger conditions, pending open duration, close conditions, and pending close duration are also defined. Alarms can trigger upon one or more channels' behavior over periods of time and conditional relationships between multiple channels. Close conditions for an alarm can be, but are not required to be, the resolution of the trigger conditions.
Abstract:
Methods and systems are provided for optimizing the control of energy supply and demand. An energy control unit includes one or more algorithms for scheduling the control of energy consumption devices on the basis of variables relating to forecast energy supply and demand. Devices for which energy consumption can be scheduled or deferred are activated during periods of cheapest energy usage. Battery storage and alternative energy sources (e.g., photovoltaic cells) are activated to sell energy to the power grid during periods that are determined to correspond to favorable cost conditions.
Abstract:
Methods for creating high quality alarms raise EMS operator awareness to abnormal conditions in monitored assets across multiple sites in a single EMS software platform. An embodiment includes steps for accessing an alarm designer software tool that contains a library of alarm definitions and the ability to create new alarm definitions, clone and edit existing alarm definitions, lock alarm definitions and delete alarm definitions. Applicable data is defined using channel attributes identifying which channel or channels associated with the multiple monitored sites are to be evaluated for alarming conditions. The alarm frequency, trigger conditions, pending open duration, close conditions, and pending close duration are also defined. Alarms can trigger upon one or more channels' behavior over periods of time and conditional relationships between multiple channels. Close conditions for an alarm can be, but are not required to be, the resolution of the trigger conditions.