Abstract:
The present invention relates to a method for compensating for the breakdown of a reagent stored in an aqueous phase comprising at least one fluorescent compound and enabling the identification of particles, including the steps of: (i) measuring the fluorescence level FLUOm(t) of particles marked with said reagent; (ii) measuring the absorbance at at least one wavelength of a solution of said reagent, at a time t close to the time of said fluorescence level FLUOm(t) measurements, so as to determine at least one current optical density DO(t) of the reagent; and (iii) calculating a correction of the fluorescent level measurements using said at least one current optical density DO(t) and at least one initial optical density DO(0) of the reagent that has not been broken down. The invention also relates to a biological analysis device implementing the method.
Abstract:
A device for agitating and collecting biological liquid samples comprises an agitator of racks of tubes, a sampling apparatus capable of collecting a biological liquid sample in a tube, and a changer capable of gripping a tube on a rack received in the agitator and moving it to the sampling apparatus. The agitator is capable of agitating at least three racks simultaneously, and the device also comprises a scheduler capable of determining destination data for a tube and destination data for the rack which receives this tube, and of determining for each tube a final location based on the destination data of the tube and the destination data of the racks received in the device, which final location designates a rack, received on the agitator and a position on this rack and can be different from the location of the tube when the rack that received it has been introduced into the device, and arranged to control the changer in order to grip a tube, present it to the sampling apparatus and replace it after sampling at the final location.
Abstract:
The invention is a method for estimating a representative volume of particles of interest (10 i) immersed in a sample, the sample extending in at least one plane, referred to as the sample plane (P 10), the sample comprising a sphering agent, capable of modifying the shape of the particles, the method comprising the following steps: a) illuminating the sample by means of a light source (11), the light source emitting an incident light wave (12) propagating towards the sample (10) along a propagation axis (Z); b) acquiring, by means of an image sensor (16), an image (I 0) of the sample (10), formed in a detection plane (P 0), the sample being arranged between the light source (11) and the image sensor (16), each image being representative of a light wave (14) referred to as an exposure light wave, to which the image sensor (16) is exposed under the effect of illumination; c) using the image of the sample (I 0), acquired during step b), and a holographic propagation operator, to calculate a complex expression (A (x, y, z)) of the exposure light wave (14) in different positions relative to the detection plane; the method comprising a step of estimating the representative volume (AA) of the particles of interest (10 i) depending on the complex expressions calculated during step c).
Abstract:
A device for shaking and sampling biological liquids that is able to take a sample of a biological liquid in a tube including a shaker designed to mix a rack holding one or more tubes by performing a succession of tilting movements between two shaking positions. The shaker is also arranged to tilt beyond the shaking position furthest away from the insertion position of a rack to discharge same by gravity.
Abstract:
A biological analysis system comprises at least two biological analysis devices connected to one another by a conveyor defining a closed circuit, each biological analysis device comprising at least one inlet and one outlet for racks of tubes, and at least one exchange region for exchanging racks of tubes with the conveyor, which exchange region is distinct from the inlet and from the outlet. The inlet of at least two biological analysis devices each form an inlet of the biological analysis system for racks of tubes, and the outlet of at least two biological analysis devices each form an outlet of the biological analysis system for racks of tubes. The biological analysis system further comprises a controller designed to command the transfer of a rack of tubes received in the biological analysis system via the conveyor to another biological analysis device according to the operations to be performed on the tubes in that rack and/or according to a respective workload status of the biological analysis devices.
Abstract:
The invention relates to a method for counting particles, particularly blood cells, in a sample, using a lensless optical imaging device. The sample is arranged between a light source and an image sensor. The sample is illuminated by a light source and an image is acquired by the image sensor, said image sensor being exposed to a light wave called an exposition wave. A digital propagation operator is applied to the acquired image so as to obtain a complex amplitude of the exposition wave according to a surface facing the image sensor. An image, called a reconstructed image, is formed from the modulus and/or the phase of said complex amplitude, on which image the particles to be counted appear in the form of regions of interest. The method then comprises a step of selecting the regions of interest corresponding to the particles to be counted.
Abstract:
The invention is a method for estimating a representative volume of particles of interest (10 i) immersed in a sample, the sample extending in at least one plane, referred to as the sample plane (P 10), the sample comprising a sphering agent, capable of modifying the shape of the particles, the method comprising the following steps: a) illuminating the sample by means of a light source (11), the light source emitting an incident light wave (12) propagating towards the sample (10) along a propagation axis (Z); b) acquiring, by means of an image sensor (16), an image (I 0) of the sample (10), formed in a detection plane (P 0), the sample being arranged between the light source (11) and the image sensor (16), each image being representative of a light wave (14) referred to as an exposure light wave, to which the image sensor (16) is exposed under the effect of illumination; c) using the image of the sample (I 0), acquired during step b), and a holographic propagation operator, to calculate a complex expression (A (x, y, z)) of the exposure light wave (14) in different positions relative to the detection plane; the method comprising a step of estimating the representative volume (AA) of the particles of interest (10 i) depending on the complex expressions calculated during step c).
Abstract:
The apparatus contains a driving unit having a driving source device and a driving shaft, and the driving shaft has a drive-side roller for rotating the object (specimen container). The driving shaft is provided with a one-directional transmission device containing a mechanism for transmitting only rotational driving force in the first direction of the driving shaft to a driven-side part. The apparatus has a mechanism for converting a rotational driving force in the first direction to move a driving unit in a direction away from the object or a mechanism for converting a rotational driving force in the first direction to move a driven unit in a direction away from the object, and the rotational driving force in the second direction of the driving shaft rotates the object.
Abstract:
A method for identifying a particle contained in a sample, including illuminating the sample using a light source, the light source producing an incident light wave propagating toward the sample, then acquiring, using a matrix-array photodetector, an image of the sample, the sample being placed between the light source and the photodetector such that the matrix-array photodetector is exposed to a light wave that is the result of interference between the incident light wave and a diffraction wave produced by each particle. The method further includes applying a numerical reconstruction algorithm to the image acquired by the photodetector, to estimate a characteristic quantity of the light wave reaching the detector, at a plurality of distances from the detector. The variation in the characteristic quantity as a function of distance allows the particle to be identified.
Abstract:
The invention relates to a sampling valve and to a device equipped with such a valve notably allowing haematology measurements to be taken from a blood sample. The valve comprise two external parts, one internal part clamped between said external parts, and means for regulating the relative angular position of these parts about an axis of rotation. The internal part has opposite surfaces pressing in a sealed and sliding manner against adjacent surfaces of the external parts. The external parts comprise orifices, loops and ducts, said loops and said ducts being arranged in such a way as to communicate selectively with orifices passing through the internal part. The valve parts have no aliquot return groove or recess or labyrinth, thereby eliminating regions of turbulence. The valve is characterized in that two of the parts are able to rotate about the axis of rotation with respect to one of the said parts which is stationary, the rotary parts preferably being the external parts. The sampling valve also makes it possible to form calibrated volumes of a sample taken in the loops and/or the orifices of the internal part.