Abstract:
A process and an apparatus involving a reaction zone loaded with particles for the prolonged continued time of operation time on a dust containing feed stream by arrangement of the particles in a plurality of beds, and in a number of operation time bypassing with main part of the feed stream a number of the particle beds.
Abstract:
A refractory lining in a combustion chamber operating in a reducing atmosphere. The lining includes at least one or more Zirconia (Zr)-based refractory lining members comprising one or more Zr-based parts. The Zr-based parts comprise at least 90 wt. %, preferably at least 95 wt. %, of monoclinic ZrO2 and/or partially stabilized ZrO2 and/or fully stabilized ZrO2, wherein the total content of tetragonal and cubic ZrO2 amounts to at least 20 wt. %, preferably more than 35 wt. %, as well as Zr based refractory lining members and methods for manufacturing the Zr based refractory lining members.
Abstract:
A method for producing a refractory lining in a combustion chamber operating in a reducing atmosphere. The lining includes at least one or more Zirconia (Zr)-based refractory lining members comprising one or more Zr-based parts. The Zr-based parts comprise at least 90 wt. %, preferably at least 95 wt. %, of monoclinic ZrO2 and/or partially stabilized ZrO2 and/or fully stabilized ZrO2, wherein the total content of tetragonal and cubic ZrO2 amounts to at least 20 wt. %, preferably more than 35 wt. %, as well as Zr based refractory lining members and methods for manufacturing the Zr based refractory lining members.
Abstract:
A continuous flow process for the preparation of one or more esters of lactic acid and 2-hydroxy-3-butenoic acid or α-hydroxy methionine analogs from a sugar in the presence of a solid Lewis acid catalyst and a solvent comprising an organic solvent and water. The invention provides a stabilized Lewis acid catalyst for use in a continuous reaction process, where the water is present in an amount of up to or equal to 10 vol. % of the organic solvent.
Abstract:
A continuous flow process for the preparation of one or more esters of lactic acid and 2-hydroxy-3-butenoic acid or α-hydroxy methionine analogues from a sugar in the presence of a solid Lewis acid catalyst and a solvent comprising an organic solvent and water. The invention provides a means for stabilizing a Lewis acid catalyst for use in a continuous reaction process wherein the water is present in an amount of up to or equal to 10 vol. % of the organic solvent.
Abstract:
The present invention relates to a mixing device for mixing a first gas with a second gas by means of a plurality of sets of injection and mixing ducts, wherein at least one of the gases is corrosive to the mixing device and the mixing device is thus constructed in corrosion resistant ceramic material.
Abstract:
A method for enhancing the protection of high temperature alloys containing iron, nickel and chromium against high temperature corrosion by carburization or metal dusting is achieved by depositing a thin layer of a metal selected from one or more of the noble metals, precious metals, metals from groups IVA, IVB, and group VA, VB of the Periodic Table and mixtures thereof with a thickness in the range of from 0.01 to 10 nullm on the surface to be protected, and annealing the treated surface in an inert atmosphere at a predetermined temperature for a sufficient time to render the treated surface resistant to carburization or metal dusting.
Abstract:
Process for the catalytic hydrotreating of a hydrocarbon feed stock containing silicon compounds by contacting the feed stock in presence of hydrogen with a hydrotreating catalyst at conditions to be effective in the hydrotreating of the feed stock, the improvement of which comprises the step of moisturising the hydrotreating catalyst with an amount of water added to the feed stock between 0.01 and 10 vol %.
Abstract:
Process for the combined preparation of urea and ammonia reactant by steps of providing ammonia synthesis gas containing carbon dioxide and conversion of the synthesis gas to the ammonia reactant, reacting the ammonia reactant with the carbon dioxide in the synthesis gas to ammonium carbamate and to urea product, which process comprises further steps of prior to the conversion of the synthesis gas to the ammonia reactant, (i) washing the synthesis gas with an aqueous solution of the ammonia reactant and forming a solution being rich in ammonium carbamate; (ii) removing excess of ammonia reactant from the washed synthesis gas by washing with water and withdrawing an aqueous solution of ammonia reactant; (iii) purifying the water washed synthesis gas by removing reminding amounts of water and ammonia; and (iv) passing the purified synthesis gas to the conversion of the gas to ammonia reactant.