Methods of making functionalized nanorods
    11.
    发明授权
    Methods of making functionalized nanorods 有权
    制备官能化纳米棒的方法

    公开(公告)号:US08093494B2

    公开(公告)日:2012-01-10

    申请号:US11667101

    申请日:2005-11-10

    IPC分类号: H01L31/04 B05D1/36 B32B15/08

    摘要: A process for forming functionalized nanorods. The process includes providing a substrate, modifying the substrate by depositing a self-assembled monolayer of a bi-functional molecule on the substrate, wherein the monolayer is chosen such that one side of the bi-functional molecule binds to the substrate surface and the other side shows an independent affinity for binding to a nanocrystal surface, so as to form a modified substrate. The process further includes contacting the modified substrate with a solution containing nanocrystal colloids, forming a bound monolayer of nanocrystals on the substrate surface, depositing a polymer layer over the monolayer of nanocrystals to partially cover the monolayer of nanocrystals, so as to leave a layer of exposed nanocrystals, functionalizing the exposed nanocrystals, to form functionalized nanocrystals, and then releasing the functionalized nanocrystals from the substrate.

    摘要翻译: 一种形成官能化纳米棒的方法。 该方法包括提供底物,通过在衬底上沉积双功能分子的自组装单层来修饰衬底,其中选择单层使得双功能分子的一侧结合到衬底表面而另一侧 侧表现出与纳米晶体表面结合的独立亲和性,从而形成改性底物。 该方法还包括使修饰的底物与含有纳米晶体胶体的溶液接触,在衬底表面上形成结合的纳米晶体单层,在纳米晶体的单层上沉积聚合物层以部分地覆盖纳米晶体的单层,以便留下一层 暴露的纳米晶体,官能化暴露的纳米晶体,以形成官能化的纳米晶体,然后从底物释放官能化的纳米晶体。

    Nanocrystal solar cells processed from solution
    14.
    发明授权
    Nanocrystal solar cells processed from solution 有权
    从溶液中加工纳米晶太阳能电池

    公开(公告)号:US08440906B2

    公开(公告)日:2013-05-14

    申请号:US12083723

    申请日:2006-10-20

    IPC分类号: H01L31/00

    摘要: A photovoltaic device having a first electrode layer, a high resistivity transparent film disposed on the first electrode, a second electrode layer, and an inorganic photoactive layer disposed between the first and second electrode layers, wherein the inorganic photoactive layer is disposed in at least partial electrical contact with the high resistivity transparent film, and in at least partial electrical contact with the second electrode. The photoactive layer has a first inorganic material and a second inorganic material different from the first inorganic material, wherein the first and second inorganic materials exhibit a type II band offset energy profile, and wherein the photoactive layer has a first population of nanostructures of a first inorganic material and a second population of nanostructures of a second inorganic material.

    摘要翻译: 一种具有第一电极层,设置在第一电极上的高电阻率透明膜,第二电极层和设置在第一和第二电极层之间的无机光活性层的光伏器件,其中无机光敏层至少部分地 与高电阻率透明膜电接触,并与第二电极至少部分电接触。 光活性层具有与第一无机材料不同的第一无机材料和第二无机材料,其中第一和第二无机材料表现出II型带偏移能量分布,并且其中光活性层具有第一种纳米结构的第一种 无机材料和第二无机材料的第二组纳米结构体。

    Solid Electrolyte Material Manufacturable by Polymer Processing Methods
    16.
    发明申请
    Solid Electrolyte Material Manufacturable by Polymer Processing Methods 有权
    通过聚合物加工方法制造的固体电解质材料

    公开(公告)号:US20090075176A1

    公开(公告)日:2009-03-19

    申请号:US12271829

    申请日:2008-11-14

    IPC分类号: H01M10/26

    摘要: The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1×106 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1×10−5 Scm−1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

    摘要翻译: 本发明一般涉及电解质材料。 根据一个实施方案,本发明提供了一种固体聚合物电解质材料,其是离子导电的,机械牢固的,并且可以使用常规的聚合物加工方法形成所需的形状。 示例性聚合物电解质材料在90℃下具有超过1×10 6 Pa的弹性模量,其特征在于在90℃下离子电导率至少为1×10 -5 Scm-1。示例性材料可以由两个结构域 或三个领域材料系统。 示例性材料可以包括由二嵌段聚合物或三嵌段聚合物制成的材料组分。 考虑到固体聚合物电解质材料的许多用途。 例如,本发明可以用于通过实现更高的能量密度,更好的热和环境稳定性,更低的自放电速率,更高的安全性,更低的制造成本和新的外形因素来改进Li-基电池。