Abstract:
The pH of a chemical copper plating solution is exactly measured for a prolonged time by utilizing a copper oxide prepared by etching metallic copper in an 0.1-1 N inorganic acid then oxidizing the etched metallic copper in an aqueous 0.1-1 N alkali metal hydroxide solution as a main electrode for pH measurement or reducing agent concentration measurement in terms of pH.A combination of the pH measurement with well known procedures for measuring concentrations of cupric ions and a complexing agent exactly measures the pH and the concentrations of a reducing agent, cupric ions and a complexing agent for a continuation of longer time than the conventional procedures.
Abstract:
A method for producing a compound semiconductor layer comprises dissolving a metal feedstock comprising at least one of a group I-B element and a group III-B element, in a metal state, in a mixed solvent comprising an organic compound containing a chalcogen element and a Lewis base organic compound to produce a solution for forming a semiconductor; forming a coat using the solution for forming a semiconductor; and heat-treating the coat.
Abstract:
A method for producing a compound semiconductor layer comprises dissolving a metal feedstock comprising at least one of a group I-B element and a group III-B element, in a metal state, in a mixed solvent comprising an organic compound containing a chalcogen element and a Lewis base organic compound to produce a solution for forming a semiconductor; forming a coat using the solution for forming a semiconductor; and heat-treating the coat.
Abstract:
The production method of a photoelectric conversion device comprises the steps of adding a chalcogenide powder of a group-IIIB element to an organic solvent including a single source precursor containing a group-IB element, a group-IIIB element, and a chalcogen element to prepare a solution for forming a semiconductor, and forming a semiconductor containing a group-I-III-VI compound by use of the solution for forming a semiconductor.
Abstract:
When a first article is to be delivered to a customer and a second article is to be collected from the customer, first rack components required for delivery of the first article and second rack components not required for delivery of the first article, yet required for collecting the second article, are specified. Delivery procedure and collection procedure of the articles using the specified first rack components and second rack components are instructed to a worksite. Accordingly, delivery and collection of the articles can be carried out by making efficient use of the rack components commonly used for the first article and the second article.
Abstract:
A throttle assembly for intake air protects a link mechanism for interlocking throttles with each other from water and mud and maintains the throttle operability in a satisfactory state. The throttle assembly for intake air includes a plurality of throttle devices for injecting fuel into intake air to generate an air-fuel mixture; a link mechanism for connecting driving portions of the throttle devices with each other, a link mechanism housing chamber defined by an outer wall member for forming a link mechanism housing chamber and housing the link mechanism, and seal members provided at the connected or mated portions of the outer wall member and a different member or the connected or mated portions of a plurality of outer wall configuring members which configure the outer wall member.
Abstract:
First and second coupling members are provided between neighboring two columns so that the distance between neighboring columns detachably attached to the four corners of a pallet on which a commodity is placed can be freely changed. Guiding members for guiding an upper commodity carrying and storing apparatus when the upper commodity carrying and storing apparatus is stacked on a lower commodity carrying and storing apparatus are provided on a top plate.
Abstract:
It is an object to provide a photoelectric conversion device with high photoelectric conversion efficiency. The photoelectric conversion device includes an electrode layer, and a light absorbing layer located on the electrode layer. The light absorbing layer is comprised of a plurality of stacked semiconductor layers containing a chalcopyrite-based compound semiconductor. The semiconductor layers contain oxygen. A molar concentration of the oxygen in surfaces and their vicinities of the semiconductor layers where the semiconductor layers are stacked on each other is higher than average molar concentrations of the oxygen in the semiconductor layers.
Abstract:
It is an object to provide a photoelectric conversion device with high photoelectric conversion efficiency. The photoelectric conversion device includes an electrode layer, and a light absorbing layer located on the electrode layer. The light absorbing layer is comprised of a plurality of stacked semiconductor layers containing a chalcopyrite-based compound semiconductor. The semiconductor layers contain oxygen. A molar concentration of the oxygen in surfaces and their vicinities of the semiconductor layers where the semiconductor layers are stacked on each other is higher than average molar concentrations of the oxygen in the semiconductor layers.
Abstract:
The invention relates to a cemented carbide material having a hard phase including tungsten carbide (WC) grains having an average grain size of 0.3 microns or less and also including cobalt (Co) as a bonding phase. The material also includes cobalt tungsten carbide grains that have a smaller average grain size than that of the tungsten carbide grains. The cemented carbide material has use, among others, in making cutting tools.