摘要:
A method for manufacturing a semiconductor layer according to an embodiment of the present invention comprises preparing a first compound, preparing a second compound, making a semiconductor layer forming solution, and forming a semiconductor layer including a group compound by using this semiconductor layer forming solution. The first compound contains a first chalcogen-element-containing organic compound, a first Lewis base, a I-B group element, and a first III-B group element. The second compound contains an organic ligand and a second III-B group element. The semiconductor layer forming solution contains the first compound, the second compound, and an organic solvent.
摘要:
Methods for producing a semiconductor layer and for producing a photoelectric conversion device, semiconductor raw material are disclosed. An embodiment of the method for producing a semiconductor layer includes: forming a film containing a metal element and an oxygen element; generating oxygen gas by heating the film; and forming a semiconductor layer containing a metal chalcogenide from the film by allowing the metal element to react with a chalcogen element. Another embodiment of the method includes forming a lower film containing a metal element; forming an upper film, which contains the metal element and a substance that contains oxygen, on the lower film; generating oxygen gas by heating the substance; and forming a semiconductor layer containing a metal chalcogenide from the lower film and the upper film by allowing a chalcogen element to react with the metal element in the lower film and the upper film.
摘要:
A photoelectric conversion device is disclosed. The photoelectric conversion device includes an electrode layer and a semiconductor layer. The semiconductor layer is located on the electrode layer and contains a group I-III-VI compound. In the semiconductor layer, an atomic ratio of a group I-B element to a group III-B element decreases from one principal surface side of the semiconductor layer on the electrode layer side to a central portion in a thickness direction and increases from the central portion to another principal surface side on a side opposite to the electrode layer.
摘要:
A photoelectric conversion device is disclosed. The photoelectric conversion device includes an electrode layer and a semiconductor layer. The semiconductor layer is located on the electrode layer and contains a group I-III-VI compound. In the semiconductor layer, an atomic ratio of a group I-B element to a group III-B element decreases from one principal surface side of the semiconductor layer on the electrode layer side to a central portion in a thickness direction and increases from the central portion to another principal surface side on a side opposite to the electrode layer.
摘要:
It is an object to provide a photoelectric conversion device with high photoelectric conversion efficiency that improves reliability by increasing contact force between a light absorbing layer and an electrode layer. The photoelectric conversion device includes an electrode layer, and a light absorbing layer located on the electrode layer. The light absorbing layer contains a compound semiconductor. The light absorbing layer comprises a first layer close to the electrode layer and a second layer located on the first layer. The first layer has a void ratio lower than that of the second layer.
摘要:
Methods for producing a semiconductor layer and for producing a photoelectric conversion device, semiconductor raw material are disclosed. An embodiment of the method for producing a semiconductor layer includes: forming a film containing a metal element and an oxygen element; generating oxygen gas by heating the film; and forming a semiconductor layer containing a metal chalcogenide from the film by allowing the metal element to react with a chalcogen element. Another embodiment of the method includes forming a lower film containing a metal element; forming an upper film, which contains the metal element and a substance that contains oxygen, on the lower film; generating oxygen gas by heating the substance; and forming a semiconductor layer containing a metal chalcogenide from the lower film and the upper film by allowing a chalcogen element to react with the metal element in the lower film and the upper film.
摘要:
It is aimed to provide a photoelectric conversion device having high adhesion between a light-absorbing layer and an electrode layer as well as high photoelectric conversion efficiency. A photoelectric conversion device comprises a light-absorbing layer including a chalcopyrite-based compound semiconductor and oxygen. The light-absorbing layer includes voids therein. An atomic concentration of oxygen in the vicinity of the voids is higher than an average atomic concentration of oxygen in the light-absorbing layer.
摘要:
It is an object to provide a photoelectric conversion device with high photoelectric conversion efficiency that improves reliability by increasing contact force between a light absorbing layer and an electrode layer. The photoelectric conversion device includes an electrode layer, and a light absorbing layer located on the electrode layer. The light absorbing layer contains a compound semiconductor. The light absorbing layer comprises a first layer close to the electrode layer and a second layer located on the first layer. The first layer has a void ratio lower than that of the second layer.
摘要:
It is an object to provide a photoelectric conversion device with high photoelectric conversion efficiency. The photoelectric conversion device includes an electrode layer, and a light absorbing layer located on the electrode layer. The light absorbing layer is comprised of a plurality of stacked semiconductor layers containing a chalcopyrite-based compound semiconductor. The semiconductor layers contain oxygen. A molar concentration of the oxygen in surfaces and their vicinities of the semiconductor layers where the semiconductor layers are stacked on each other is higher than average molar concentrations of the oxygen in the semiconductor layers.
摘要:
It is an object to provide a photoelectric conversion device with high photoelectric conversion efficiency. The photoelectric conversion device includes an electrode layer, and a light absorbing layer located on the electrode layer. The light absorbing layer is comprised of a plurality of stacked semiconductor layers containing a chalcopyrite-based compound semiconductor. The semiconductor layers contain oxygen. A molar concentration of the oxygen in surfaces and their vicinities of the semiconductor layers where the semiconductor layers are stacked on each other is higher than average molar concentrations of the oxygen in the semiconductor layers.