Abstract:
A cylindrical side-wall core is acquired from an inner circumferential surface of a well at a predetermined depth from a ground surface. First, second and third measurement cross sections spaced apart in a longitudinal direction of the core are set. In each cross section, the length of the maximum diameter of the cross section where the amount of distortion relative to the diameter of a standard circle is largest and the length of the minimum diameter where the amount of distortion relative to the diameter of the standard circle is smallest are measured. Six independent components among stress tensors for defining three-dimensional stress elements are obtained using an equation representing a difference between maximum and minimum stresses acting on the side-wall core along each cross section and another equation representing the angle between the well excavation direction and the action direction of the maximum stress on each cross section.
Abstract:
Provided is a hydrotreating step (A) containing a hydroisomerization step (A1) that obtains a hydroisomerized oil (a1) by bringing a FT synthesis oil into contact with a hydroisomerization catalyst and/or a hydrocracking step (A2) that obtains a hydrocracked oil (a2) by bringing it into contact with a hydrocracking catalyst, and a fractionation step (B) that transfers at least a portion of the hydrotreated oil (a) composed of the hydroisomerized oil (a1) and/or the hydrocracked oil (a2) to a fractionator and, at the very least, obtains a middle distillate (b1) with a 5% distillation point of 130 to 170° C. and a 95% distillation point of 240 to 300° C., and a heavy oil (b2) that is heavier than the middle distillate (b1).
Abstract:
Hydrocarbon oil obtained by Fischer-Tropsch (FT) synthesis reaction using a catalyst within a slurry bed reactor is fractionated into a distilled oil and a column bottom oil in a rectifying column, part of the column bottom oil is flowed into a first transfer line that connects a column bottom of the rectifying column to a hydrocracker, at least part of the column bottom oil is flowed into a second transfer line branched from the first transfer line and connected to the first transfer line downstream of the branching point, the amount of the catalyst fine powder to be captured is monitored while the catalyst fine powder in the column bottom oil that flows in the second transfer line are captured by a detachable filter provided in the second transfer line, and the column bottom oil is hydrocracked within the hydrocracker.
Abstract:
A synthesis gas production apparatus (reformer) to be used for a synthesis gas production step in a GTL (gas-to-liquid) process is prevented from being contaminated by metal components. A method of suppressing metal contamination of a synthesis gas production apparatus operating for a GTL process that includes a synthesis gas production step of producing synthesis gas by causing natural gas and gas containing steam and/or carbon dioxide to react with each other for reforming in a synthesis gas production apparatus in which, at the time of separating and collecting a carbon dioxide contained in the synthesis gas produced in the synthesis gas production step and recycling the separated and collected carbon dioxide as source gas for the reforming reaction in the synthesis gas production step, a nickel concentration in the recycled carbon dioxide is not higher than 0.05 ppmv.
Abstract:
A production method for natural gas according to the invention includes a step of adiabatically compressing a raw natural gas containing helium gas, a step of separating the helium gas from the raw natural gas by passing the adiabatically-compressed raw natural gas through a separation membrane unit, a step of conveying the raw natural gas from which the helium gas has been separated to a terminal through a pipe line, and a step of pressing the helium gas separated from the raw natural gas into an underground storage formation.
Abstract:
A start-up method for a hydrocarbon synthesis reaction apparatus, comprising: an initial slurry-loading step in which the slurry is loaded into the reactor at the initial stage of the Fischer-Tropsch synthesis reaction at a lower loading rate than that applied to the reactor in a steady-state operation; and a CO conversion ratio-increasing step in which the liquid level of the slurry in the reactor is raised by adding to the slurry the hydrocarbons synthesized at the early stage of the Fischer-Tropsch synthesis reaction so that the CO conversion ratio is increased in proportion to a rise in the liquid level of the slurry in the reactor.
Abstract:
The hydrocarbon synthesis reaction apparatus according to the present invention includes a reaction vessel that brings a synthesis gas having carbon monoxide gas and hydrogen gas as main components into contact with a slurry having a solid catalyst suspended in a liquid hydrocarbon compound to synthesize a liquid hydrocarbon compound using a Fischer-Tropsch reaction; a filter that is provided within the reaction vessel and is configured to separate the liquid hydrocarbon compound from the catalyst; and a powdered catalyst particles-discharging device configured to discharge powdered catalyst particles in the solid catalyst in the slurry to the outside of the reaction vessel.
Abstract:
In the hydrocarbon-producing apparatus, a vapor-liquid separation tank of a second vapor-liquid separation unit is provided with a filling material layer. A vapor-liquid separation tank of the first vapor-liquid separation unit has a first return line. The vapor-liquid separation tank of the second vapor-liquid separation unit has a second return line. A light component of light oil discharged from a bottom of the vapor-liquid separation tank is returned to a portion between a top side above a return-location from the second return line within the vapor-liquid separation tank of the second vapor-liquid separation unit, and a line directly connected with a cooler installed on the first vapor-liquid separation unit through the first return line. A heavy component of light oil discharged from a bottom of the vapor-liquid separation tank of the second vapor-liquid separation unit is returned to the filling material layer through the second return line.
Abstract:
A hydrocarbon synthesis reaction apparatus includes a reactor bringing synthesis gas into contact with a slurry having a solid catalyst suspended in liquid hydrocarbons to synthesize hydrocarbons by the Fischer-Tropsch synthesis reaction; a cylindrical inner tube having a lower end arranged within the reactor at a predetermined distance from the bottom thereof; and a sparger arranged on an inner lower side of the inner tube, which blows the synthesis gas toward the inside of the inner tube. A Fischer-Tropsch synthesis reaction region, where the slurry including bubbles flows out from inside the inner tube through an upper end thereof, is formed in a space between a virtual extension portion of the upper end of the inner tube and an inner surface of the reactor, wherein the slurry is held within the reactor until the upper end of the inner tube is lower than the liquid level of the slurry.
Abstract:
The present invention provides a process for producing a hydrocarbon oil by performing a Fischer-Tropsch synthesis reaction using a reactor for a Fischer-Tropsch synthesis including a reaction apparatus having a slurry containing catalyst particles and a gaseous phase located above the slurry to obtain a hydrocarbon oil, wherein the Fischer-Tropsch reaction is performed while controlling a temperature of the slurry so that a difference T2−T1 between the average temperature T1 of the slurry and a temperature T2 at the liquid level of the slurry in contact with the gaseous phase is 5 to 30° C.