Abstract:
A liquid crystal display device provided herein can be switched between a display mode and a mirror mode, and can ensure a high image quality in the display mode.The liquid crystal display device comprises liquid crystal panel 200 including sub-pixels 254, 255, and back light 213 for irradiating light to the back surface of liquid crystal panel 200. Transmission sub-pixel 254 can be switched into an image display state which can allow irradiated light to exit, and a black display state which does not allow irradiated light to exit. Mirror sub-pixel 255 can be switched between a mirror state which can allow reflected light to exit and a non-mirror state which does not allow reflected light to exit, independently of transmission sub-pixel 254. A control unit places each transmission sub-pixel 254 into the image display state or black display state, and places each mirror sub-pixel 255 into the mirror state or non-mirror state.
Abstract:
An IPS-mode transflective LCD device includes an array of pixels each including a reflective region and a transmissive region juxtaposed. The reflective region operates in a normally-white mode, and the transmissive region operates in a normally-black mode. A common data signal is supplied to the reflective region and transmissive region, whereas the common electrode signal in the transmissive region is an inverted signal of the common electrode signal in the reflective region, to thereby obtain similar gray-scale levels.
Abstract:
In a formation method for forming a fine structure in a workpiece (30) containing an etching control component, using an isotropic etching process, a mask (32, 34) having an opening (36) is applied to the workpiece, and the workpiece is etched with an etching solution (38) to thereby form a recess (40), corresponding to a shape of the opening, in a surface of the workpiece. The etching of the workpiece is stopped due to the etching control component eluted out of the workpiece in the etching solution within the recess during the isotropic etching process.
Abstract:
A Liquid Crystal Display (LCD), a backlight used for the LCD and a method for producing the LCD and the backlight are provided which are capable of inhibiting an increase in component counts and in assembling processes and of reducing them, thereby achieving low costs. A display image is obtained by arranging a backlight section being able to perform scanning as a single unit in a manner that it positionally matches a liquid crystal displaying section. The backlight section is provided with a plurality of scanning electrodes and light emitting layers each providing a different luminescent color, and being spatially separated from each other on a principal face of the backlight and scanning is performed on a plurality of light emitting layers providing a different luminescent color.
Abstract:
In a formation method for forming a fine structure in a workpiece (30) containing an etching control component, using an isotropic etching process, a mask (32, 34) having an opening (36) is applied to the workpiece, and the workpiece is etched with an etching solution (38) to thereby form a recess (40), corresponding to a shape of the opening, in a surface of the workpiece. The etching of the workpiece is stopped due to the etching control component eluted out of the workpiece in the etching solution within the recess during the isotropic etching process.
Abstract:
A liquid crystal display device with a touch panel has a reflective display region and a transmissive display region, at least the transmissive display region including a liquid crystal layer energizable according to a lateral electric field mode. The liquid crystal display device includes a liquid crystal layer held between a pair of substrate disposed in confronting relation to each other, observer-side circular polarizer 9 disposed outwardly of one of the substrates, back-side circular polarizer 8 disposed outwardly of the other substrate, observer-side compensator 11 for reducing refractive index anisotropy of the liquid crystal layer in the reflective display region and the liquid crystal layer in the transmissive display region, and touch panel 13 disposed between observer-side circular polarizer 9 and observer-side compensator 11.
Abstract:
A first polarizer and a second polarizer have respective absorption axes extending approximately perpendicularly to each other, and a first retardation plate and a third retardation plate have respective slow axes extending approximately perpendicularly to each other. The first retardation plate and the third retardation plate have respective retardations that are approximately equal to each other, and have respective Nz coefficients that are approximately equal to each other. A second retardation plate and a liquid crystal layer in a transmissive display area have a slow axis and an orientation axis, respectively, extending approximately perpendicularly to each other. The second retardation plate and the liquid crystal layer in the transmissive display area have respective retardations that are approximately equal to each other.
Abstract:
In a formation method for forming a fine structure in a workpiece containing an etching control component, using an isotropic etching process, a mask having an opening is applied to the workpiece, and the workpiece is etched with an etching solution to thereby form a recess, corresponding to a shape of the opening, in a surface of the workpiece. The etching of the workpiece is stopped due to the etching control component eluted out of the workpiece in the etching solution within the recess during the isotropic etching process.
Abstract:
An IPS-mode transflective LCD device includes an array of pixels each including a reflective region and a transmissive region juxtaposed. The reflective region operates in a normally-white mode, and the transmissive region operates in a normally-black mode. A common data signal is supplied to the reflective region and transmissive region, whereas the common electrode signal in the transmissive region is an inverted signal of the common electrode signal in the reflective region, to thereby obtain similar gray-scale levels.
Abstract:
A Liquid Crystal Display (LCD), a backlight used for the LCD and a method for producing the LCD and the backlight are provided which are capable of inhibiting an increase in component counts and in assembling processes and of reducing them, thereby achieving low costs. A display image is obtained by arranging a backlight section being able to perform scanning as a single unit in a manner that it positionally matches a liquid crystal displaying section. The backlight section is provided with a plurality of scanning electrodes and light emitting layers each providing a different luminescent color, and being spatially separated from each other on a principal face of the backlight and scanning is performed on a plurality of light emitting layers providing a different luminescent color.