Abstract:
A display apparatus includes a backlight unit which emits a light, and a display panel which receives the light to display an image. The backlight unit includes a driving circuit which outputs a driving voltage and a reference voltage; and p light source blocks connected to the driving circuit, p being a natural number greater than or equal to 2, where each light source block of the p light source blocks receives the driving voltage through a first terminal thereof and the reference voltage through a second terminal thereof to generate the light, and the p light source blocks are divided into a plurality of groups, each group including at least two light source blocks. The driving circuit includes a first switching section which applies the driving voltage to first terminals of the p light source blocks, and a second switching section which applies the reference voltage to the second terminal of at least one of the p light source blocks.
Abstract:
A gasket for a vehicle is configured to improve performance of a turbocharger according to enhanced sealing performance. The gasket is disposed at a coupling portion of a cylinder head of an engine and an exhaust manifold adapted to supply exhaust gas from the cylinder head to a turbocharger.
Abstract:
Provided is a parallelism control apparatus of a movable platen of an electric injection molding machine, to which a new arrangement type using a wedge to control the parallelism of a movable platen is applied to reduce the size of the parallelism control apparatus, ensure an installation space, and solve a difficulty during installation, which ensures rigidity of the movable platen in directions of forward and rearward movements, and enables parallelism adjustment and firm position fixing by controlling a vertical amount, a horizontal amount, and a combination of vertical and horizontal amounts even in a narrow space, thereby further enhancing precision and quality reliability of molded products.
Abstract:
A cylinder head having a water jacket may include a cylinder head in which a combustion chamber may be formed, and a protruding portion that may be integrally formed with the cylinder head and an exhaust outlet portion may be formed in an outer surface thereof to communicate with the combustion chamber, wherein the water jacket may be formed inside the protruding portion at an upper side and a lower side of an exhaust passage that may be aligned through the exhaust outlet portion, the water jacket having an upper water jacket formed between the upper side of the exhaust passage and an upper surface of the protruding portion, a lower water jacket formed between the lower side of the exhaust passage and a lower surface of the protruding portion, and a connection water jacket connecting the upper water jacket and the lower water jacket in the protruding portion.
Abstract:
Disclosed herein is a lead pin for a package substrate. The lead pin for the package substrate according to the exemplary embodiment of the present invention includes a head part having one surface opposite to the package substrate and the other surface that is an opposite side to the one surface; and a connection pin having a pin shape bonded to the other surface of the head part, wherein the head part has a concave depression part toward the package substrate.
Abstract:
The present invention relates to a method and system for management of the mobility of a terminal by using a non-access stratum (network stratum “NAS”) protocol in a mobile telecommunication network. The method for management of the mobility of a terminal by using an NAS protocol, i.e., messages includes a terminal (“UE”) and a mobile management entity (“MME”), and efficiently divides and processes security protected NAS messages and NAS messages with no security, and efficiently divides and processes EMM (EPS Mobility Management) messages, i.e., mobility management messages, and ESM (Evolved Session Management) messages, i.e., session management messages in a network such as an EPS (Evolved Packet System) of 3GPP, thereby managing the mobility and the sessions of a terminal in an efficient manner.
Abstract:
Disclosed herein is a method of inspecting defects in a circuit pattern of a substrate. At least one laser beam radiation unit for radiating a laser beam onto an inspection target circuit pattern of a substrate in a non-contact manner is prepared. A probe beam radiation unit for radiating a probe beam onto a connection circuit pattern to be electrically connected to the inspection target circuit pattern in a non-contact manner is prepared. The laser beam is radiated onto the inspection target circuit pattern using the laser beam radiation unit. The probe beam is radiated onto the connection circuit pattern using the probe beam radiation unit, thus measuring information about whether the probe beam is diffracted, and a diffraction angle. Accordingly, the method can solve problems such as erroneous measurements caused by contact pressure and can reduce the time required for measurements.
Abstract:
A method of manufacturing a printed circuit board having a flow preventing dam, including: applying a dry film resist on a base substrate having a solder pad, and then primarily exposing the dry film resist to light; secondarily exposing the primarily exposed dry film resist formed on a peripheral area of the base substrate to light, thus forming a flow preventing dam; removing the unexposed dry film resist to expose the solder pad, thus forming an opening; printing the opening with a solder paste, and then forming a solder bump through a reflow process; and removing the primarily exposed dry film resist
Abstract:
A thin-film transistor includes a semiconductor pattern, a first gate electrode, a source electrode, a drain electrode and a second gate electrode. The semiconductor pattern is formed on a substrate. A first conductive layer has a pattern that includes the first gate electrode which is electrically insulated from the semiconductor pattern. A second conductive layer has a pattern that includes a source electrode electrically connected to the semiconductor pattern, a drain electrode spaced apart from the source electrode, and a second gate electrode electrically connected to the first gate electrode. The second gate electrode is electrically insulated from the semiconductor pattern, the source electrode and the drain electrode.