Abstract:
Process for the observation of at least one sample region with a light raster microscope by a relative movement between the illumination light and sample via first scanning means along at least one scanning axis essentially perpendicular to the illumination axis wherein at an angle to the plane of the relative movement, preferably perpendicular thereto, second scanning means are moved and an image acquisition takes place by the movement of the first and second scanning means being coupled and a three-dimensional sampling movement being done by the illumination of the sample wherein the second scamming means are coupled to the movement of the first scanning means in such a manner that straight and/or curved lines and/or plane and/or curved surfaces are scanned which are extended along at least one scanning direction of the first scanning means as well as along the scanning direction of the second scanning means.
Abstract:
Process for observing at least one sample region with a light raster microscope by a relative movement between the illumination light and sample via a first scanner along at least one scanning axis essentially perpendicular to the illumination axis wherein several illuminated sample points lie on a line and are detected simultaneously with a spatially resolving detector. At an angle to the plane of the relative movement, a second scanner is moved and an image acquisition takes place by coupling the movement of the first and second scanners and a three-dimensional sampling movement being done by the illumination of the sample. The second scanner is coupled to the movement of the first scanner such that straight and/or curved lines and/or plane and/or curved surfaces are scanned which are extended along at least one scanning direction of the first scanner as well as along the scanning direction of the second scanner.
Abstract:
In a confocal laser scanning microscope with an illuminating configuration (2), which provides an illuminating beam for illuminating a specimen region (23), with a scanning configuration (3, 4), which guides the illuminating beam over the specimen while scanning, and with a detector configuration (5), which via the scanning configuration (3, 4) images the illuminated specimen region (23) by means of a confocal aperture (26) on to at least one detector unit (28), it is provided that the illuminating configuration (2) of the scanning configuration (3, 4) provides a line-shaped illuminating beam, that the scanning configuration (3, 4) guides the line-shaped illuminating beam over the specimen f while scanning and that the confocal aperture is designed as a slit aperture (26) or as a slit-shaped region (28, 48) of the detector unit (28) acting as a confocal aperture.
Abstract:
Raster scanning light microscope with line pattern scanning with at least one illumination module, in which the means to achieve a variable partition of the laser light into least two illumination channels are envisioned and joint illumination of a sample takes place at the same or at different areas of the sample.
Abstract:
Process for the observation of at least one sample region with a light raster microscope by a relative movement between the illumination light and sample via first scanning means along at least one scanning axis essentially perpendicular to the illumination axis wherein the illumination light illuminates the sample in parallel at several points or regions and several points or regions are detected simultaneously wherein at an angle to the plane of the relative movement, preferably perpendicular thereto, second scanning means are moved and an image acquisition takes place by the movement of the first and second scanning means being coupled and a three-dimensional sampling movement being done by the illumination of the sample wherein the second scanning means are coupled to the movement of the first scanning means in such a manner that straight and/or curved lines and/or plane and/or curved surfaces are scanned which are extended along at least one scanning direction of the first scanning means as well as along the scanning direction of the second scanning means.
Abstract:
Raster Scanning Light Microscope with punctiform light source distribution with at least one illumination module, in which the means to achieve a variable partition of the laser light into least two illumination channels are envisioned and joint illumination of a sample takes place at the same or at different areas of the sample.
Abstract:
Laser scanning microscope and its operating method in which at least two first and second light distributions activated independently of each other and that can move in at least one direction illuminate a sample with the help of a beam-combining element, and the light is detected by the sample as it comes in, characterized by the fact that the scanning fields created by the light distributions on the sample are made to overlap mutually such that a reference pattern is created on the sample with one of the light distributions, which is then captured and used to create the overlap with the help of the second light distribution (correction values are determined) and/or a reference pattern arranged in the sample plane or in an intermediate image plane is captured by both scanning fields and used to create the overlap (correction values are determined) and/or structural characteristics of the sample are captured by the two scanning fields as reference pattern and used to create the overlap in which correction values are determined.
Abstract:
Process for the observation of at least one sample region with a light raster microscope by a relative movement between the illumination light and sample via a first scanner along at least one scanning axis essentially perpendicular to the illumination axis wherein at an angle to the plane of the relative movement, preferably perpendicular thereto a second scanner is moved and an image acquisition takes place by the movement of the first and second scanners being coupled and a three-dimensional sampling movement being done by the illumination of the sample wherein the second scanner is coupled to the movement of the first scanner in such a manner that straight and/or curved lines and/or plane and/or curved surfaces are scanned which are extended along at least one scanning direction of the first scanner as well as along the scanning direction of the second scanner.
Abstract:
A beam corradiator for combining two radiation beams, preferably movable beams independent from each other in at least one direction, to scan and/or influence a sample, preferably a manipulation system and an imaging system, with a partially reflecting layer being provided for the corradiation, wherein the thickness of the layer is provided with a preferably consistent incline or decline over the optically effective cross-section of the beam corradiatior.
Abstract:
Method for actuation control of a microscope, in particular of a Laser Scanning Microscope, in which, at least one first illumination light, preferably moving at least in one direction, as well as at least one second illumination light moving at least in one direction, illuminate a sample through a beam combination, a detection of the light coming from the sample takes place, whereby, at least one part of the illumination light is generated through the splitting of the light from a common illuminating unit, characterized in that, by means of a common control unit, a controlled splitting into the first and the second illumination light takes place, in which the intensity of the first illuminating light, specified by the user or specified automatically, is assigned a higher priority (is prioritized) compared to the specified value for the second illumination light, and an adjustment for the second illumination light takes place until a maximum value is obtained, which is determined by the value specified for the first illumination light.