Abstract:
There are provided a substrate processing apparatus and a substrate processing method realizing an effective reduction of a voltage change of a substrate on an electrode to reduce the variation of incident energy of ions entering the substrate. The substrate processing apparatus includes: a first electrode holding a substrate on a main surface of the first electrode; a second electrode facing the first electrode; a RF power source applying to the first electrode a RF voltage whose frequency is equal to or higher than 40 MHz; and a pulse voltage applying unit applying to the first electrode a pulse voltage decreasing in accordance with a lapse of time, by superimposing the pulse voltage on the RF voltage.
Abstract:
A plasma processing apparatus includes a first radio frequency (RF) power supply unit for applying a first RF power for generating a plasma from a processing gas to at least one of a first and a second electrode which are disposed facing each other in an evacuable processing chamber. The first RF power supply unit is controlled by a control unit so that a first phase at which the first RF power has a first amplitude for generating a plasma and a second phase at which the first RF power has a second amplitude for generating substantially no plasma are alternately repeated at predetermined intervals.
Abstract:
A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes an attenuator that attenuates the reference beam reflected from the reference beam reflector to thereby make an intensity thereof closer to an intensity of the measurement beam reflected from the temperature measurement object.
Abstract:
A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes a controller that stores, as initial peak position data, positions of interference peaks respectively measured in advance by irradiating the first to the nth measuring beam onto the first to the nth measurement point of the temperature measurement object, and compares the initial peak position data to positions of interference peaks respectively measured during a temperature measurement to thereby estimate a temperature at each of the first to the nth measurement point.
Abstract:
A wiper blade 13 comprises a rubber holder 17 attached to a tip of a wiper arm 14 and a blade rubber 16 supported by the rubber holder 17. The rubber holder 17 is formed into a U-shaped cross section, and an intermediate portion of the blade rubber 16 is covered with the rubber holder 17. Also, both sides of the rubber holder 17 are provided with covers 18 in a longitudinal direction in series. Each of the cover 18 becomes rotatable to the rubber holder 17 in a direction perpendicular to a front windshield glass 12, and exposed portions from the rubber holder 17 of the blade rubber 16 are covered with these covers 18 in an elastically deformable state.
Abstract:
An Er-doped multiple-core optical fiber amplifier has an Er-doped multiple-core optical fiber. A signal light of 1.5 .mu.m wavelength band is input through an optical isolator at front stage, and excitation lights of 0.98 .mu.m or 1.48 .mu.m wavelength emitted from excitation light sources are injected through a WDM coupler at front stage and a WDM coupler at rear stage, respectively. An amplified signal light is output through optical isolator at rear stage. A length L.sub.M of the Er-doped multiple-core optical fiber is set to obtain a substantially maximum saturated output power of the amplified signal light.
Abstract:
The object of the present invention is to provide a wide-band optical fiber coupler whose light-branching ratio is independent of the wavelength of light rays to be transmitted therethrough as well as a method for preparing the wide-band optical fiber coupler. When an optical fiber 1 having zero-dispersion at 1.55 .mu.m band and an optical fiber 2 having zero-dispersion at 1.3 .mu.m band are fused and drawn to form a coupled portion 3, a light beam 15 is incident upon the optical fiber 2 and the intensity of the light beam outgoing through either of these optical fibers 2 or 1 is measured to detect the light-branching ratio observed at the coupled portion 3. The drawing operation is interrupted at an instance when the detected light-branching ratio falls within the range of 50.+-.5%.
Abstract:
An apparatus for changing the wiping range of a wiper enables the wiping range to be changed easily but without involving the risk of unwanted changes. The motor caused movement of the drive link is converted into a movement of the drive link for causing a reciprocating oscillation of wiper arms by first and second links which are each swingably supported, the second link being swingable realtive to the first link in such a manner that the stop position of the wiper arms can be varied. An auxiliary link provided on the first link is swingable while following the relative swinging of the second link and being integrated therewith, with the swinging radius of the auxiliary link being smaller than the relative swinging radius of the second link. A spring is supported by two relatively displaceable points of support that are on a link arm of the auxiliary link and on the second link whereby the spring exerts resilient force under which the second link swings to the appropriate one of a plurality of second link positions.
Abstract:
A wiper apparatus is provided with: a wiper arm (14) which is swung about a rotation shaft (18); and a wiper motor (13) for generating drive power to be transmitted to the rotation shaft (18), the wiper apparatus is provided with a power transmission mechanism (19) for transmitting the drive power from the rotation shaft (18) to the wiper arm (14), the power transmission mechanism (19) is provided with: a link member (19a) fixed to the rotation shaft (18); and a support shaft (19b) fixed at a position on the link member (19a), which deviates from the rotation shaft (18), and configured to support the wiper arm (14), a coupling section between the support shaft (19b) and the wiper arm (14) is positioned in front of the front end of the front glass (11), and at least one part of the wiper motor (13) is located within the projection region of the front glass (11), thereby suppressing the increase in the number of parts.
Abstract:
A developing device includes first and second developer carriers facing each other in a facing region, a regulating member that regulates a layer thickness of developer, and a separation member. The first and second developer carriers respectively include first and second magnetic members that are respectively magnetized with first and second facing magnetic poles having opposite polarities. The separation member separates the developer so that the developer is supplied toward the first and second developer carriers. The separation member is disposed such that distances between the separation member and the first and second developer carriers are the smallest in a region in which a magnitude of a combined magnetic field of the first and second magnetic poles locally decreases as compared with a case where at least one of the first and second developer carriers is independently disposed due to interaction between the first and second facing magnetic poles.