Abstract:
A method of operating a fuel cell electrochemical system includes receiving at least one of a cost of electricity and a cost of fuel and adjusting at least one of an operating efficiency and throughput of the fuel cell based on the at least one of the received cost of electricity and the received cost of fuel.
Abstract:
A method of operating a high temperature fuel cell system containing a plurality of fuel cell stacks includes operating one or more of the plurality of fuel cell stacks at a first output power while operating another one or more of the plurality of the fuel cell stacks at a second output power different from the first output power.
Abstract:
A method of operating a high temperature fuel cell system containing a plurality of fuel cell stacks includes operating one or more of the plurality of fuel cell stacks at a first output power while operating another one or more of the plurality of the fuel cell stacks at a second output power different from the first output power.
Abstract:
A fuel cell stack module includes a base, a cover dome removably positioned on the base, and a plurality of fuel cell stacks removably positioned on the base below the cover dome. A modular fuel cell system includes a plurality of the fuel cell stack modules, where each fuel cell stack module may be electrically disconnected, removed from the fuel cell system, repaired or serviced without stopping an operation of the other fuel cell stack modules in the fuel cell system.
Abstract:
A method of operating a fuel cell electrochemical system includes receiving at least one of a cost of electricity and a cost of fuel and adjusting at least one of an operating efficiency and throughput of the fuel cell based on the at least one of the received cost of electricity and the received cost of fuel.
Abstract:
An electrochemical system includes a reversible fuel cell system which generates electrical energy and reactant product from fuel and oxidizer in a fuel cell mode and which generates the fuel and oxidant from the reactant product and the electrical energy in an electrolysis mode. The system also includes a reactant product delivery device which is adapted to supply the reactant product to the reversible fuel cell system operating in the electrolysis mode, in addition to or instead of the reactant product generated by the reversible fuel cell system in the fuel cell mode, and a fuel removal device which is adapted to remove the fuel generated by the reversible fuel cell system operating in the electrolysis mode from the electrochemical system.
Abstract:
An aircraft contains a plurality of solid oxide fuel cells located in different portions of the aircraft. A method of operating the plurality of solid oxide fuel cells includes providing power from each of the plurality of solid oxide fuel cells to at least one of a plurality of power consuming components located in a same portion of the aircraft as the solid oxide fuel cell. Another method of operating at least one solid oxide fuel cell located in an aircraft includes providing ambient air and power to the solid oxide fuel cell without providing fuel to the solid oxide fuel cell to generate oxygen for the aircraft cabin when the aircraft is in flight. Another method of operating at least one solid oxide fuel cell located in a passenger aircraft includes providing water from the solid oxide fuel cell to the aircraft cabin.