Abstract:
The polishing apparatus comprises: a dressing section for dressing a polishing pad; a measuring section for measuring a surface property of the polishing pad; a polishing result measuring section for measuring a polishing result of a work; a storing section for storing correlation data between dressing condition data for dressing the polishing pad, surface property of the polishing pad and polishing results, which are learned by an artificial intelligence; and an input section for inputting an object polishing result. The artificial intelligence performs a first arithmetic process, in which the surface property of the polishing pad corresponding to the object polishing result is inversely estimated on the basis of the correlation data, and a second arithmetic process, in which the corresponding dressing condition is derived on the basis of the surface property of the polishing pad inversely estimated.
Abstract:
A manufacturing method of a heart correction net is provided. The method includes: a first step of taking cross-sectional images of a heart in a layer direction, in which an apex and a base of the heart are connected; a second step of extracting outlines of the heart from the cross-sectional images; a third step of defining dividing points with respect to a three-dimensional shape reconstructed based on the outlines, the dividing points being defined on the outlines in a circumferential direction of the heart; a fourth step of dividing a contour of the heart in three-dimensions into divided regions based on the plurality of the dividing points, and creating development data, in which the each of the divided regions is developed on a two-dimensional plane, while an approximate shape of each of the divided regions is maintained; a fifth step of creating paper-pattern data based on the development data; and a sixth step of knitting the heart correction net with a knitting machine based on the paper-pattern data.
Abstract:
To utilize fish catch microdata obtained on a daily basis at fishing grounds for fresh fish, and to rapidly and accurately transmit the fish catch information to the various consumer markets via a computer communications network, so as to promote distribution and commercial transactions that rapidly adjust to changes in supply and demand, and so as to rationalize and stabilize the market price of fresh fish, while preventing a decline in the degree of freshness of the fish. Having fisheries input to a server fish catch microdata via a computer communications network, converting this data to a database and storing it on a server, so that when a fishery, distributor, consumer, or the like seek fresh fish information, they are asked to input to the server the selection conditions for the desired information via a computer communications network, and the fresh fish information conforming to these conditions is read from said database, and transmitted to the party desiring the fresh fish information.
Abstract:
The present invention relates to navigation of an autonomous vehicle capable of autonomously tracking a route toward a destination. The present invention provides a system comprising the steps of forming a route for an autonomous vehicle with a plurality of information storing elements placed at specific locations in line along a passageway, each beacon storing its own location information on the route, mounting an information retrieving section on the autonomous vehicle so that as the vehicle travels, the information retrieving section comes in sufficient proximity to the information storing elements in sequence, transmitting radio waves between the information retrieving section and information storing element, supplying, through the transmission of the radio wave, electricity from the vehicle to the information storing element to activate it, retrieving, by the information retrieving section, location information from the information storing element that indicates the vehicle's present position, and controlling a moving direction of the vehicle based on this vehicle's position information.
Abstract:
A magnetic field calibration device is used to calibrate a magnetism measurement device having a plurality of magnetic sensors and includes a first holder having a first holding surface, a second holder having a second holding surface having a fixed relative positional relation with the first holding surface, and magnetism generating parts fixed to the first holding surface and the second holding surface. Thus, calibration can be completed with a single operation by assigning the first and second holding surfaces of the magnetic field calibration device respectively to the first and second measurement surfaces of the magnetism measurement device. In addition, since the relative positional relation between the first and second holding surfaces is fixed, measurement results obtained from the individual measurement surfaces match each other.
Abstract:
A roll-forming apparatus includes a heating portion, and a shaping portion disposed downstream of the heating portion in a conveyance direction of a fiber reinforced plastic member to shape the fiber reinforced plastic member heated by the heating portion. The shaping portion includes a first forming roller pair, and a second forming roller pair disposed downstream of the first forming roller pair in the conveyance direction. A rotational speed of the second forming roller pair is set higher than a rotational speed of the first forming roller pair to apply a tension in the conveyance direction to the fiber reinforced plastic member between the first forming roller pair and the second forming roller pair.
Abstract:
A production method for a joined object is a method for producing a joined object by joining two objects together. The method includes: irradiating joining surfaces of the respective two objects with plasma; and bonding the joining surfaces irradiated with plasma, at a temperature lower than a melting point of a substance included in the objects.
Abstract:
The method of the present invention comprises the steps of: previously obtaining correlation data between surface properties of the polishing pad dressed under a plurality of stages of dressing conditions and polishing effects of the work polished by the polishing pad dressed under the dressing conditions; determining an assumed dressing condition capable of achieving an object polishing effect from the correlation data; dressing the polishing pad under the assumed dressing condition determined; polishing the work; cleaning the polishing pad which has been used for polishing the work; and measuring a surface property of the cleaned polishing pad.
Abstract:
An electric vehicle steering/drive control method and apparatus having predetermined steering modes defining composite patterns of individual wheel travel paths, whereby the vehicle wheels are controlled independently. The steering modes are determined by different condition equations related to each composite pattern. A steering mode select signal is generated based on a mode selection by a vehicle driver. The steering mode select signal is received by a wheel steering angle computer and a wheel rotation speed computer. Based in part on the steering mode select signal, the wheel steering angle computer generates a signal that is received by a steering motor controller, which in turn controls motors that change the steering angle of the wheels. An actual angle sensor generates a signal based on the actual angle of the wheels and a steering angle comparator receives the actual angle sensor signal. In addition, to move the vehicle in a particular direction and at a particular speed, a speed and direction command signal is also generated based on driver input. This speed and direction command signal is received by a common signal rate of change suppression computer, which generates a signal received by the wheel steering angle computer and a wheel rotation speed computer. Then the wheel rotation speed computer generates a signal based on signals received from the common signal rate of change suppression computer and the steering angle comparator computer. A drive motor controller receives the wheel rotation speed signal and activates drive motors associated with each wheel, thereby causing the wheels to move rotationally.