Abstract:
A molding apparatus mainly comprises a mold chase holder, a mold chase, a heater and a molding flowability sensor. The mold chase comprises a mold cavity and a via, wherein the via penetrates a mold-cavity surface of the mold cavity. The mold chase is accommodated by a mold chase holder and there is a heater, for heating the mold chase up, disposed therein. And the molding flowability sensor for measuring the molding flowability of the instant molding flow at the mold-cavity surface of the mold cavity is provided at the mold-cavity surface of the mold cavity.
Abstract:
A semiconductor package has a die and a plurality of leads electrically connected to the die with bonding wires. A heat spreader has an upper face thermally contacted with the die. The heat spreader is formed by a copper core having at least a portion of surface sequentially coated with a metal medium layer and an insulation layer, wherein the metal medium layer has an adhesion degree with insulation material higher than copper. A package body encapsulates the die, the heat spreader and the plurality of leads, wherein the surface area of the heat spreader that contacts with the package body is coated with the metal medium layer and the insulation layer.
Abstract:
A multi-row substrate strip mainly includes a plurality of first and second substrate units in parallel, a plurality of connecting bars, a degating metal layer and at least one plating layer. The connecting bars are used to connect the first substrate units and connect the second substrate units. The degating metal layer includes a plurality of runner portions on the connecting bars, a plurality of first gate portions and a plurality of second gate portions. The first gate portions are formed on the first substrate units, and the second gate portions are formed on the second substrate units. The plating layer is formed on the first gate portions and the second gate portions, and exposes the runner portions, so as to save the plating material.
Abstract:
A substrate testing apparatus with full contact configuration. The apparatus includes a jig and a full-contact probe substrate. The jig has a conductive tape disposed thereon for fully electrically connecting a plurality of first connecting pads disposed on an upper surface of a substrate strip. The full-contact probe substrate has a contact surface and includes a plurality of conductive bumps and contact pads. The conductive bumps are disposed on the contact surface, and are used for individually probing a plurality of corresponding second connecting pads disposed on a lower surface of the substrate strip. The contact pads are electrically connected to the conductive bumps. The substrate strip is fully tested by means of the jig and the full-contact probe substrate.
Abstract:
The present invention relates to a method of manufacturing semiconductor packages and products thereof. The method of manufacturing comprises steps of: (a) providing a lead frame which comprises a die pad, a plurality of connecting parts and a plurality of leads, wherein the die pad is lower than the leads and connects the leads through the connecting parts, and wherein the die pad comprises at least one supporting structure to fix the lead frame substantially; (b) mounting a die onto the die pad and electrically connecting the lead frame and die by bonding wires; (c) providing an upper mold and a lower mold, wherein the upper mold and lower mold are located at an upper side and a lower side of the leads, respectively, wherein the supporting structures of the die pad are allowed to be supported on the lower mold, and the leads are allowed to protrude outwards from a mold cavity formed by the upper and lower molds; (d) setting the lead frame in steps (a) and (b) onto the lower mold in step (c) and making the supporting structures of the die pad to be supported on the lower mold and then combining the upper mold to the lower mold; (e) applying an encapsulant into the mold cavity formed by the upper and lower molds; and (f) removing the upper and lower molds after encapsulating.
Abstract:
A stacked chip assembly generally includes a first chip, a second chip and a lead frame. The lower surface of the first chip is pasted onto the lower surface of the second chip by an adhesive film so as to form a stacked chip body. The stacked chip body is disposed on the lead frame. Bonding pads of the upper surface of the first chip are interconnected to the upper surface of the inner leads of the lead frame by bonding wires. Bonding pads of the upper surface of the second chip are interconnected to the lower surface of the inner leads of the lead frame by bonding wires. Therefore, the first chip and the second chip are simultaneously interconnected to an external circuit devices through the lead frame.
Abstract:
The present invention relates to a method for manufacturing a semiconductor chip package structure including the following steps. A substrate is provided. A plurality of chips are assembled onto the substrate and are electrically connected with the substrate. A stiffener is assembled onto the substrate and the stiffener has a top surface and a bottom surface facing the substrate. A molding compound is formed to cover the semiconductor chip, the substrate, the top surface and the bottom surface of the stiffener. Afterwards, a singulation step is performed to cut the molding compound, the substrate and the stiffener.
Abstract:
The present invention relates to a packaging mold with electrostatic discharge protection comprising a pot block and at least one receiver. The pot block comprises a plurality of pots and runners. Each of the pots branches and connects the runners for injecting molding compound into the runners through the pots. The receiver for supporting a plurality of substrate plates connects the runners for receiving the molding compound from the runners to package the dice on the substrate plates. Each receiver comprises a receiving surface contacting the substrate plate; wherein the receiving surface is roughened to reduce static electric charges generated when separating the substrate plates and the packaging mold. Additionally, the surfaces of the runners are roughened to reduce static electric charges generated in the runners when separating the molding compound and the runners. It prevents the dice packaged from damage due to static electric charges to raise the yield rate of semiconductor package products thereby.
Abstract:
A stacked structure of a semiconductor package mainly comprises a first chip, a second chip, a substrate and a lead frame. The first chip and the second chip are attached on the surface of the substrate by a plurality of solder bumps by means of flipchip bonding. Then, the first chip, the second chip and the substrate form a stacked structure. A plurality of plugs of the substrate is provided along an edge of the substrate so as to attach to a plurality of receptacles of the lead frame to form a semiconductor device. The plugs are attached to the receptacles of the lead frame by silver paste to form a semiconductor device in such a way that the first chip and the second chip electrically connect to the lead frame. In addition, the lead frame is bent to form a plurality of fingers, which is placed in a space that is formed by a sidewall of the chip and a surface of the substrate while it is assembled. An encapsulant covers the stacked structure, then the fingers are exposed on the surface of the encapsulant, so that the first chip and the second chip can be operated by means of the fingers.