Abstract:
Printed circuit boards and methods for fabricating the same. A via in a printed circuit board electrically connects to trace lines of the PCB, such that only one plating line is required to electrically connect a plating bus and the plating through hole. Thus, in an electroplating step, current can flow to fingers in the trace lines to plate an anti-oxidation metal layer thereon. The via is separated into several sub-vias to electrically isolate the plating line from trace lines and fingers, each of which connects to the plating line or the trace lines. Finally, at least one plating line remains, thus avoiding negative impact on electrical performance of an electronic device that uses the printed circuit board.
Abstract:
The present invention relates to a packaging substrate with electrostatic discharge protection. The packaging substrate is deposited in a packaging mold, and the packaging mold comprises a plurality of injection pins for pushing the packaging substrate out of the packaging mold. A first copper-mesh layer and a second copper-mesh layer of the packaging substrate are electrically connected to each other via position pins. A bottom side of the packaging substrate comprises a plurality of recesses in positions corresponding to positions of the injection pins. The recesses pass the second copper-mesh layer to electrically connect the injection pins to the second copper-mesh layer, and static electric charges are conducted to the injection pins via the second copper-mesh layer and away from the packaging substrate. It prevents dies to be packaged from damage due to electrostatic discharge so as to raise the yield rate of semiconductor package products.
Abstract:
A substrate structure having a solder mask and a process for making the same, including (a) providing a substrate having a top surface, the top surface having a die pad and a plurality of solder pads; (b) forming a first solder mask on the top surface, the first solder mask having a plurality of openings, each opening corresponding to each solder pad so as to expose at least part of the solder pad; and (c) forming a second solder mask on the first solder mask. The substrate structure can be used for packaging a thicker die so as to prevent the die crack and the overflow of molding compound will be avoided.
Abstract:
A fabrication method for PCBs. The method includes providing a substrate having a layout area and a periphery area around the layout area on a surface, forming a patterned wiring layer, having a bus line in the periphery area, a plurality of pads in the layout area, a plurality of bridge lines providing electrical connection between the pads, and a plating line electrically connecting the bus line and pads, overlying the substrate, forming a patterned solder mask over the substrate and wiring layer, the patterned solder mask having a plurality of first openings respectively exposing the pads and plating a metal layer respectively overlying the pads, forming a plurality of second openings respectively exposing the bridge lines between the pads, and removing the exposed bridge lines.
Abstract:
The present invention relates to a substrate structure having a solder mask and a process for making the same. The process comprises: (a) providing a substrate having a top surface, the top surface having a die pad and a plurality of solder pads; (b) forming a first solder mask on the top surface, the first solder mask having a plurality of openings, each opening corresponding to each solder pad so as to expose at least part of the solder pad; and (c) forming a second solder mask on the first solder mask. Whereby, the substrate structure of the invention can be used for packaging a thicker die so as to prevent the die crack and the overflow of molding compound will be avoided.
Abstract:
A molding apparatus mainly comprises a mold chase holder, a mold chase, a heater and a molding flowability sensor. The mold chase comprises a mold cavity and a via, wherein the via penetrates a mold-cavity surface of the mold cavity. The mold chase is accommodated by a mold chase holder and there is a heater, for heating the mold chase up, disposed therein. And the molding flowability sensor for measuring the molding flowability of the instant molding flow at the mold-cavity surface of the mold cavity is provided at the mold-cavity surface of the mold cavity.
Abstract:
A fabrication method for PCBs. The method includes providing a substrate having a layout area and a periphery area around the layout area on a surface, forming a patterned wiring layer, having a bus line in the periphery area, a plurality of pads in the layout area, a plurality of bridge lines providing electrical connection between the pads, and a plating line electrically connecting the bus line and pads, overlying the substrate, forming a patterned solder mask over the substrate and wiring layer, the patterned solder mask having a plurality of first openings respectively exposing the pads and plating a metal layer respectively overlying the pads, forming a plurality of second openings respectively exposing the bridge lines between the pads, and removing the exposed bridge lines.
Abstract:
A molding apparatus mainly comprises a mold chase holder, a mold chase, a heater and a pressure sensor. The mold chase comprises a mold cavity and a via, wherein the via penetrates the mold-cavity surface of the mold cavity. The mold chase is accommodated by a mold chase holder and there is a heater, for heating the mold chase up, disposed therein. And the pressure sensor for measuring the viscosity of the instant molding flow at the mold-cavity surface of the mold cavity is provided in the via of the mold chase.
Abstract:
A method for fabricating an identification code is provided. First, a metallic film is provided for fabricating a circuit on a substrate, and a circuit area and a non-circuit area are formed on the metallic film after a patterning process. Next, an identification code is formed on the non-circuit area for the basis of production management and quality control.
Abstract:
A multi-row substrate strip mainly comprises a plurality of first and second substrate units in parallel, a plurality of connecting bars, a degating metal layer and at least one plating layer. The connecting bars are used to connect the first substrate units and connect the second substrate units. The degating metal layer comprises a plurality of runner portions on the connecting bars, a plurality of first gate portions and a plurality of second gate portions. The first gate portions are formed on the first substrate units, and the second gate portions are formed on the second substrate units. The plating layer is formed on the first gate portions and the second gate portions, and exposes the runner portions, so as to save the plating material.